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CHAPTER I 

INTRODUCTION 

The total load of human misery and suffering from communicable disease 

in the world today is incalculable and presents a formidable challenge to public 

health authorities, epidemiologists, parapsychologists, entomologists, bio 

mathematicians and any other experts whose skills may have some bearing on 

the problems involved. 

 Modern medicine can have now do much to alleviate or cure many 

infectious diseases once they have been contracted. The elimination of poverty 

and hunger and the provision of adequate social and public health measures 

such as quarantine, isolation of infections cases, provision of clean water 

supplied, proper disposal of sewage, vaccination and inoculation etc have 

provided the main contributions to the fight against disease. 

 Let us use some models to study the large – scale population phenomena 

of immediate relevance to any social and public health measures that might be 

advocated or undertaken. In particular, let us know more about the transmission 

and spread of infectious disease, about trying to predict the course of an 

epidemic, and about the recognition of threshold densities of population which 

must be surpassed before a flare-up is likely. 
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 In the context of epidemic disease, let us require to know more about how 

the endemic level is related factors, which can be controlled by public health 

intervention. Let us need to develop models that will assist the                         

decision – making process by helping to evaluate the consequences of choosing 

one of the alternative strategies available . Therefore mathematical models of 

the dynamics of a communicable disease can have a direct bearing on the choice 

of an immunization of control or eradication techniques. 

 Suppose let us consider an individual who has been exposed to interface 

(i.e) who has received infectious material by some means such as direct 

physical contact with an infectious person, breathing in infectious organisms or 

eating contaminated food, An actively infectious individual and the appearance 

of symptoms is normally called the incubation period and the period from the 

observation of symptoms is one case to the observation of symptoms in a 

second case directly infected from the first is the second interval. When 

symptoms in occur either during or immediately after the end of the infectious 

period the incubation period is exactly equal to the sum of the latent period and 

the part of the infectious period during which the patient is still a danger to 

other. 

 It is supposed for the group of individuals at any instant there is a certain 

chance of contact between any two individuals sufficient for the transmission of 

disease of one is an infective and one a susceptible. When there are several 
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infectious in a group, a given susceptible will remain true of disease only if 

happens to escape adequate contact with any of them with continuous infection 

models a suitable analogous assumption is that the chance of one new case in a 

very short interval of time is jointly proportional to the length of the interval, 

the number of susceptibles and the number of infectives. Such ideas regarding 

lead to mathematical equations describing the whole process. 

 Carriers are the individuals who although apparently healthy themselves, 

harbour infections which can be transmitted to others. 

Methodological Aspects 

 Let us consider briefly a number of methodological aspects concentrating 

more on the general philosophical Implications. 

 Let us first look at the simplest type of epidemic model in which infection 

spreads by contact between the members of a community but in which there is 

no removal from circulation by death, recovery or isolation. Ultimately all 

susceptibles therefore become infected. When dealing with large number of 

both susceptibles and infectives, let as should expect the effect of statistical 

fluctuations on large – scale phenomena to be much reduced. In such 

circumstances if not unreasonable to use a first approximation a deterministic 

model in which, let us assume that for given number of susceptibles and 

infectives and for a given attack rate, certain definite numbers of new infectives 
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will occur in any specified time. In stochastic models probability distribution of 

the numbers of susceptibles or infectives occurring at any instant replace the 

point values of deterministic treatments. In general, the form of behavious 

predicted by a stochastic model is likely to be very similar by the corresponding 

deterministic version when the number of susceptibles or infectives are both 

sufficiently large but in other situations there may be important differences. 

 Moreover, there is a good reason to suppose that the assumptions of 

homogeneous mixing is approximately valid for epidemic in only comparatively 

small as individual household where statistical fluctuations may be large. 

 A major part of the work on stochastic epidemic models has been on the 

general stochastic epidemic a name given by Bailey  we give a simpler proof for 

the threshold theorem due to Williams and whittle using  Rajarshi  technique. 

 A major complication of many diseases is the existence of so-called 

carriers (i.e) individuals who although apparently healthy themselves are 

already infected and are capable of transmitting the infection to others. Philippe 

Picard  gives some applications of martingale to epidemics. All the results are in 

connection with stopping times T and include the expression of the joint 

generating function Laplace transform of XT, xu yu du and yu du and relation 

between moments of these three variables. The relation between Downston’s 

model and the general epidemic is discussed and finally a generalization of one 

of Daniel’s classical results is given. 
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 In a real epidemic the increase of the number of infectives usually 

generates sanitary measures in order to isolate infectives and prevent contacts 

with susceptibles. Therefore Picard [32] in the general epidemic model 

considered the parameters are as functions of infectives which gives a better 

approximation. In these cases the martingale approach proves very valuable and 

gives explicit results quite easily. 

 The considerable literature now existing on stochastic models is mainly 

concerned with closed population epidemics, such as the general stochastic 

epidemic and thus is of limited direct use in modeling most AIDS epidemics 

where immigrations into and deaths from the class of susceptibles can be an 

important feature. 

 AIDS needs no introductions. AIDS (Acquired Immune Deficiency 

Syndrome) which breaks down the body’s natural immune system is transmitted 

primarily by sexual contact or by bodily fluids exchanged between drug addicts, 

who share needles. AIDS epidemic an explosive spread of disease was first 

diagonised almost 12 years ago. To understand AIDS one must know a little 

about the functioning of the human body and its resistance power, or capacity of 

the body or immune system. 

 The AIDS is caused be a germ HIV which enters the body’s while blood 

cells and makes it impossible for the body to defined itself against illness. The 

HIV doesn’t kill the people directly. But it weakens the body’s resistance power 
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and finally destroys the body’s immune system. The major signs of AIDS are 

loss of more than 10% of normal body weight and servere diarrhea for more 

than a month and continuous fever for more that one month. However standard 

stochastic epidemic theory is often still not applicable because the infection 

process is modeled slightly differently. The usual 𝑥𝑦 term (where x and y are 

the number of susceptibles and infectives respectively) for the rate of new 

infections is replaced by 𝑥𝑦/𝑥 + 𝑦. The justification for the new term is that 

AIDS spread by individuals changing sexual partners. So if we removed 

individuals are no longer available as sexual partners, then the probability that a 

new partner of a given susceptibles infected is 𝑦/𝑥 + 𝑦. 

 John A. Jacquez Philiponeille  compare the threshold results for the 

deterministic and stochastic versions of the homogeneous SI model with 

recruitment death due to the disease a background death rate and transmission 

rate. A fundamental concept that has come out the deterministic mathematical 

theory of epidemics is that of the basic reproduction number. 

 Let us examine the deterministic and stochastic formulation for the SI, 

SIS, SIR and SIRS models for homogeneous populations. Finally Frankball 

Philpo’neill consider a model for the spread of an epidemic in a closed, 

homogeneously mixing population in which new infection occur at rate 

𝑥𝑦/𝑥 + 𝑦 where 𝑥  and 𝑦 are the number of susceptibles and infectious 

individuals respectively and  is the infection rate. This differs with the 
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standards general epidemic in which new infectious occur at rate 𝑥𝑦. Both the 

deterministic and stochastic versions of the modified epidemic are analysed. 

Simple and General Epidemics 

Let us first look at the simplest type of epidemic model in which infection 

spreads by contact between the members of a community but in which there is 

no removal from circulation by death, recovery or isolation. When dealing with 

large number of both susceptibles and infectives, let us expect the effect of 

statistical fluctuations on large scale to be reduced. 

In general the form of behaviour predicted by a stochastic model is likely 

to be very similar to that entailed by the corresponding deterministic version 

when the number of susceptibles and infectives are both sufficiently large but in 

other situations there may be important differences. Let us use the concept of 

the epidemic curve defined by the rate at which new cases are recognized. 

Deterministic model 

 In the simplest deterministic formulation, let us suppose that let us have 

homogeneously mixing group of individuals of total size n + 1  and that the 

epidemic is started off at time t = 0 by just one individual becoming infections, 

the remaining n individuals all being susceptible, but as yet un infected. 
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 In general at time t, let us write x and y are continuous for the numbers of 

susceptibles and infectives so that x + y = n + 1. The actual numbers of new 

infections in the time interval ∆t is βxy∆t, where β is the infection rate. 

                                                  ∆t  = − βxy∆t 

dx / dt = − βxy  =  βx ( n – x + 1 ) 

If  τ = βt, then  

dx / dτ = − x ( n – x + 1 ) 

With x = n, τ = 0 

              x = n ( n + 1 ) / n + e 
( n + 1 ) τ 

the number of infective at time τ is  

 y = n – x + 1 = (n + 1) e 
( n + 1 ) τ

 / n + e 
( n + 1 ) τ 

    = n + 1 / 1 + n e 
−( n + 1 ) τ 

Epidemic curve is  dy / dτ =  − dx / dτ  

W = − dx / dτ = xy = n ( n+ 1 ) 2 e 
−( n + 1 ) τ

 / ( n + e 
−( n + 1 ) τ

)
2 

The epidemic curve at attains its maximum 

When τ = log n / ( n + 1 ) 

When x = y = ½ ( n + 1 ) , w = ¼ ( n + 1 ) 
2 
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Stochastic model 

 Let us now consider the simplest probability version of the deterministic 

model. As before, let us assume a homogeneously mixing group of ( n + 1 ) 

individuals and suppose for simplicity that the epidemic starts at time t = 0 with 

one infective and n susceptibles. Let us take the random variables X(t) and Y(t) 

to represent the number of susceptible and infectives respectively at time t 

Where X( t ) + Y( t ) = n + 1 . 

 Then the chance of a contact between any two specified individuals in an 

interval  ∆t is β∆t + o(∆t). When β is the contact rate and  β = constant. 

 It follows that the chance of one new infection in the whole group in ∆t is 

βxy∆t to order ∆t . When  the transition occurs, x decreases by one unit and Y 

increases by one unit. Suppose if we take the possibility of removal then the 

chance of one removal in ∆t can be taken as γY∆t where γ is the removal rate. 

The variable Y decreases by one unit after the transition, but X remains 

unchanged. 

 Let 𝑝𝑛(𝜏) be the probability that there are still r susceptible remaining 

uninfected at time 𝜏. The probability of r susceptibles remaining at time 𝜏 + ∆𝜏  

can be expressed as  
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             Pr(𝜏 + ∆𝜏) = ( r + 1 ) ( n – r ) 𝜏 pr+1 (𝜏) 

    + { 1 – r  ( n – r + 1 ) ∆𝜏} pr (𝜏)     (1.1) 

        dpn / d𝜏 = ( r + 1 ) ( n – r ) pr+1 – r ( n – r + 1 ) pr ,  

       0 ≤ r ≤ n – 1     (1.2) 

               dpn / d𝜏 = - n pn 

with initial condition pn(0) = 1         (1.3) 

Laplace transform and its inverse with respect to time given by  

  𝜑∗(𝑠) =  ∫ 𝑒−𝑠𝜏𝜑(𝜏)𝑑𝜏  , 𝑅(𝑠) > 0∞0        (1.4) 

  𝜑(𝜏) = 1/2 𝜋𝑖 ∫ 𝑒−𝑠𝜏𝜑∗(𝑠)𝑑𝑠𝑐+𝑖∞𝑐−𝑖∞                            (1.5) 

When C is positive and greater than the real parts of all the singularities of  𝜑∗(𝑠). 

Applying the equation (1.1) to (1.5) 

 𝑝𝑟∗ = (𝑟 + 1)(𝑛 − 𝑟)/𝑠 + 𝑟(𝑛 − 𝑟 + 1)𝑝𝑛+1∗ , 0 ≤ 𝑟 ≤ 𝑛 − 1 

 𝑝𝑛∗ = 1/𝑠 + 𝑛          (1.6)  

The Epidemic Curve 

 Let k cases out of n occur in the interval ( ,  + ). Let f() be the 

frequency function for the time of occurrence of new cases then  
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𝐹(𝜏)𝑑𝜏 = 𝐸 (𝑘𝑛) = 1/𝑛[𝜇1′ (𝜏 + 𝛿𝜏) − 𝜇′(𝜏)] 
       = − 1/𝑛 𝑑𝜇1′ /𝑑𝜏𝑑𝜏          (1.7) 

When 𝜇1′ (𝜏) is the average number of susceptibles at time τ.  

    𝑊 = 𝑑𝜇1′ /𝑑𝜏       (1.8) 

The normalized epidemic curve is 

             𝑊 = 𝑤/𝑛 = − 1/𝑛 𝑑𝜇1′ /𝑑𝜏         (1.9) 

The probability of one new infective in ∆τ is r ( n – r + a ) ∆τ. 

 ∴  𝑝𝑟∗ = (𝑟 + 1)(𝑛 − 𝑟 + 𝑎 − 1 )𝑝𝑟+1∗ , 0 ≤ 𝑟 ≤ 𝑛 − 1 

     𝑝𝑛∗ = 1/𝑠 + 𝑛𝑎   

The Laplace transform of W is  

  𝑊∗ =  ∫ 𝑒−𝑠𝜏𝑤𝑑𝜏 ∞0        

         = −1/𝑛 ∫ 𝑒−𝑠𝜏𝑑𝜇1′ /𝑑𝜏𝑑𝜏∞0                                            (using 1.9)     

          = 1 − 𝑠/𝑛 ∫ 𝑒−𝑠𝜏𝜇1′ 𝑑𝜏∞0   

     𝜇1′ = 𝜋 when τ = 0 and is exponentially small as τ → ∞  

 𝜇1′ (𝜏) = ∑ 𝑟𝑝𝑟(𝜏)𝑛𝑟=0  

    𝑊∗ =  1 − 𝑠/𝑛 ∑ 𝑟𝑝𝑟∗𝑛𝑟=1  
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        =  1 − 𝑠/𝑛 ∑ 1/𝑟 ∏ 𝑗 = 𝑛 − 𝑟 + 𝑎𝑛{1 + 𝑠/𝑗(𝑛 − 𝑗 + 𝑎)}−1𝑛+𝑎−1𝑟=𝑎    

           (1.10) 

General Epidemic 

 Let us now turn to a more realistic and generally applicable 

representation of an epidemic basic parameters in the model are therefore the 

infection rate and the removal rate. This type of process is called general 

epidemic.   

Deterministic model 

 Suppose let us have a community of total size n, comprising time t, x 

susceptibles y infectives in circulation and z individuals who are isolated, d 

dead or recovered and immune.  

   x + y + z = n                (1.11) 

β – infection rate and γ – removal rate. In time  ∆t, there are βxy∆t new 

infectors and γy∆t removals. 

 The basic differential equations are 

    dx / dt = −βxy  

                               dy / dt = βxy – γy                   (1.12) 

    dz / dt = γy 
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ρ = γ / β , is the relative removal rate. Eliminating y from the first and third of 

these equations. By division gives after integration. 

           𝑥 = 𝑥0𝑒−𝑧 𝑝⁄  

               𝑑𝑧/𝑑𝑡 = 𝛾(𝑛 − 𝑥 − 𝑧)   using x + y + z = n            (1.13)  

     𝑑𝑧/𝑑𝑡 = 𝛾(𝑛 − 𝑧 − 𝑥0𝑒−𝑧 𝑝⁄ )              (1.14) 

            𝑑𝑧/𝑑𝑡 = 𝛾(𝑛 − 𝑥0 + (𝑥0/𝜌 − 1)𝑧 − 𝑥0 𝑧2 2𝜌2⁄ )     (1.15) 

Assume that, z / ρ is small and ( 𝑥0/𝜌 − 1) is small 

   ∴ 𝑧 = 𝜌2/𝑥0(𝑥0/𝜌 − 1 + α tan ℎ (12 𝛼𝛾𝑡 − 𝜑)) 

Where      𝛼 = {(𝑥0/𝜌 − 1)2 + 2𝑥0𝑦0/𝜌2}1/2                  

 (1.16) 

And 𝜑 =  tan ℎ−1 1/𝛼 (𝑥0/𝜌 − 1) 

∴ The epidemic curve is therefore  

  𝑑𝑧 𝑑𝑡⁄ = 𝛾𝛼2𝜌2/2𝑥0 sec ℎ2 (1/2 𝛼𝛾𝑡 − 𝜑)                     

(1.17) 

It is in general a symmetrical bell shaped curve. 

 The total number of removals after the allows of a very long, ideally 

infinite period of time. 
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 Let t → ∞ , 𝑧∞ = 𝜌2 𝑥0⁄ (𝑥0/𝜌 − 1 + 𝛼) 

             𝑧∞~2𝜌 (1 −  𝜌/𝑥0)                         

(1.18) 

 Let us now turn to a more mathematically precise treatment of the 

foregoing analysis based on the discussion of   Kendall[22]. 

 Suppose , let us assume that the infection rate is a function β (z) of z then 

(1.13) is changed by 

   𝑥 = 𝑥0 exp[−1/𝛾 ∫ 𝛽(𝑤)𝑑𝑤𝑧0 ]                       (1.19) 

Which together (1.14) gives 

𝑑𝑧/𝑑𝑡 = 𝛾[𝑛 − 𝑧 − 𝑥0 exp[−1/𝛾 ∫ 𝛽(𝑤)𝑑𝑤𝑧0 ]]     (1.20)  

    𝛽(𝑧) = 2𝛽 (1 − 𝑧/𝜌) + (1 − 𝑧/𝜌)−1⁄             (1.21)  

Then  β (0) = β and β (z) < β  when 0 < z < ρ. 

 Consider    𝑛 − 𝑧 − 𝑥0𝑒−𝑧 𝑝⁄ =0                           (1.22) 

 Let the unique negative and positive roots of (1.22) be −𝜂1  and 𝜂2 

respectively. 

 ∴ 𝑡 = 1/𝛾 ∫ 𝑑𝑤/𝑛 − 𝑤 − 𝑥0  𝑒−𝑧𝑤 𝑝⁄     𝑧0  0 ≤  z  <  𝜂2           

(1.23) 



15 

 

 Which when taken in conjunction with (1.14) gives a formal solution for 

that epidemic curve dz / dt in terms of a pair of parametric equations. The whole 

of the curve for 0 ≤ t < ∞ is involved since the integral in (1.23) diverges when z 

→ 𝜂2 and therefore 𝑧∞ = 𝜂2. 
Stochastic model 

 Let X(t) and Y(t) be representing the number of susceptibles and 

infectives respectively. The chance of one new infection in ∆t as βXY∆t where 

β is the infection rate. The chance of one removal in ∆t is γY∆t where γ is the 

removal rate. The variable Y decreases by one unit after the transition but X 

remains unchanged. 

 At t = 0, there are n susceptibles and a infectives. Let prs(t) be the 

probability that at time t there are r susceptibles still uninfected and s infectives 

in circulation. The chance of one new infection in time ∆t is βrs∆t and the 

chance of one removal γs∆t. 

 γ /β = ρ , the ratio of removal rate of infection rate which is called as 

relative removal rate. 

       𝑑𝑝𝑟𝑠 𝑑𝜏⁄ = (𝑟 + 1)(𝑠 − 1)𝑝𝑟+1,𝑠−1 

    −𝑠(𝑟 + 𝜌)𝑝𝑟𝑠 + 𝜌(𝑠 + 1)𝑝𝑟,𝑠+1 

and                        (1.24)                
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      𝑑𝑝𝑛𝑎 𝑑𝜏⁄ = −𝑎(𝑛 + 𝜌)𝑝𝑛𝑎 

 0 ≤ 𝑟 + 𝑠 ≤ 𝑛 + 𝑎, 0 ≤ 𝑟 ≤ 𝑛, 0 ≤ 𝑠 ≤ 𝑛 + 𝑎 

 𝑝𝑛𝑎(0) = 1          (1.25) 

If let us introduce the probability generating function given by  

 𝑃(𝑧, 𝑤, 𝜏) = ∑ 𝑝𝑟𝑠(𝜏)𝑧𝑟𝑤𝑠 

Which satisfies 

              𝜕𝜌 𝜕𝑡⁄ = (𝑤2 − 𝑧𝑤) 𝜕2𝑝 𝜕𝑧𝜕⁄ 𝑤 + 𝜌(1 − 𝑤) 𝜕𝜌 𝜕𝑤⁄                      

(1.26) 

With initial condition p(z,w,0) = z
n 
w

a
 . 

Total Size of Epidemic 

  𝑃𝑤 = lim𝑡→∞ 𝑝𝑛−𝑤, 0 

        = lim𝜆→0 𝜆𝑞𝑛−𝑤, 0                         (1.27) 

        = lim𝜆→0 𝜌𝑞𝑛−𝑤, 1. 

Put r = n – w and s = 0 in the following equation 

 (𝑟 + 1)(𝑠 − 1)𝑞𝑟+1,𝑠−1 − {𝑠(𝑟 + 𝜌) + 𝜆}𝑞𝑟𝑠 + 𝜌(𝑠 + 1)𝑞𝑟,𝑠+1 

and  −{𝑎(𝑛 + 𝜌) + 𝜆}𝑞𝑛𝑎 + 1 =0                                             (1.28) 

 𝑝𝑤 = 𝜌𝑓𝑛−𝑤 , 1         ,0 ≤ 𝑤 ≤ 𝑛 
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Where  𝑓𝑟𝑠 = lim𝜆→0 𝑞𝑟𝑠.        (1.29) 

 1 ≤ r + s ≤ n + a , 0 ≤ r ≤ n, 1 ≤ s ≤ n + a 

Putting 𝜆 = 0, 
(𝑟 + 1)(𝑠 − 1)𝑓𝑟+1,𝑠−1 − {𝑠(𝑟 + 𝜌) + 𝜆}𝑓𝑟𝑠 + 𝜌(𝑠 + 1)𝑓𝑟,𝑠+1 = 0 

    −{𝑎(𝑛 + 𝜌) + 𝜆}𝑓𝑛𝑎 + 1   = 0       (1.30) 

 ∴ 𝑓𝑟𝑠 = 𝑛! (𝑟 + 𝜌 − 1)𝜌𝑛+𝑎−𝑟−𝑠/𝑠𝑟! 𝑛! + 𝜌𝑔𝑟𝑠            (1.31) 

                      
𝑔𝑟+1,𝑠−1 − 𝑔𝑟𝑠 + (𝑟𝜌𝜌)−1𝑔𝑟,𝑠+1 = 0𝑔𝑛𝑎 = 1 }             

(1.32) 

 𝑔𝑟𝑠 = ∑ (𝑟 + 𝜌)𝑠−𝑖−1𝑔𝑟+1,𝑖𝑛+𝑎−𝑟−1𝑖=𝑠−1         

 𝑔𝑟1 = (𝑟 + 𝜌)−1𝑔𝑟2                

    𝑔𝑛𝑎 = 1            (1.33) 

Carrier Models 

 Carrier are individual who although apparently healthy themselves, 

harbor infection which can be transmitted to others. Diseases such the 

poliomyelitis, tubes, culosis, or typhoid are typical examples some carrier may 

be infectives for a very long long time, others becomes clean of  infections are 

quickly in either case the carriers are effectively removal from circulation, but 
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as they are not ill and exhibit no removal symptoms of diseases, they are no 

themselves usually recognized as actual cases. On the other hands, carriers may 

be suspected because of the existence of on other wise inexplicable occurrence 

of scatted cases. This may lead to a deliberate search for carrier and some or all 

of them may be identified through the use of special test. 

Basic Deterministic Model 

 In this model, let us concentrate attention only two types of individuals. 

Susceptible and carriers. It is assumed that only carrier are responsible for the 

actual spread of infection. When a susceptible is infected, he is supposed to 

exhibit symptoms sufficiently quickly to be effectively recognized and removal 

from circulation before he can transmit the diseases others. 

 The elimination of carrier proceeds at some finite rate which depends on 

both spontaneous recovery and public dedication. Let us suppose that at time t, 

we have x susceptibles and y carriers. The number of new infectives in time ∆t 

is βXY∆t where β is the infection rate, while the number of carriers removed in 

∆t is assumed be γY∆t where γ is the removal rate for carriers. 

 The deterministic process is characterized by the equation   

   dx / dt = − βxy 

   dy / dt =  − γy                     (1.34) 



19 

 

with 𝑥 =  𝑛 , 𝑦  =  𝑏, 𝑡 =  0. If we start with 𝑛 susceptibles and 𝑏 carriers at 

time 𝑡 =  0. 

 ∴                            𝑥 = 𝑛 exp [ 𝛽𝑏𝛾(𝑒−𝛾𝑡−1))                          

           𝑦 = 𝑏𝑒−𝛾𝑡                              (1.35) 

 The ultimate number of unaffected susceptibles as t → ∞ is                       𝑥∞ = 𝑛𝑒−𝛽𝑏/𝛾 and the total size W of the observed epidemic is  

        𝑊 = 𝑛( 1 − 𝑒−𝛽𝑏/𝛾)                    (1.36) 

 In this model let us take the number of susceptibles and carriers at time t 

are represented by the random variable X(t) and U(t). The chance of one new 

infection occurring in time ∆t is βXU∆t. When this event happens X decreases 

by one unit and U remains unchanged. Again, let us assume that the chance of 

one carrier being removal is γU ∆t. In this case U is decreased by one unit but X 

is unchanged. 

   𝜌 = 𝛾 𝛽⁄  and 𝜏 = 𝛽𝑡. 

 Let the probability of  being  r susceptibles and u carriers at time τ be 

pru(τ). 

 Let the point probability generating function  p( x, y, τ ) defined by 

                    𝑝(𝑥, 𝑦, 𝜏) = ∑ 𝑝𝑟𝑢(𝜏)𝑥𝑟𝑦𝑢 
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      𝜕𝑝 𝜕𝑡⁄ = (𝑥−1 − 1)𝑥𝑦 𝜕2𝑝 𝜕𝑥𝜕𝑦 + 𝜌(𝑦−1 − 1)⁄ 𝑦 𝜕𝑝 𝜕𝑦⁄  

                                   (1.37) 

          = (1 − 𝑥)𝑦 𝜕2𝑝 𝜕𝑥𝜕𝑦 + 𝜌(1 − 𝑦)⁄ 𝜕𝑝 𝜕𝑦⁄  

With initial condition assuming  

   

𝑝(𝑥, 𝑦, 0) = 𝑥𝑛𝑢𝑏𝑝(𝑥, 𝑦, 𝜏) = 𝑋(𝑥)𝑌(𝑦)Γ(𝜏)}                   (1.38) 

  𝑇1 𝑇⁄ = (1 − 𝑥)𝑦 𝑋′𝑌′ 𝑋𝑌 + 𝜌(1 − 𝑦)⁄ 𝑌′ 𝑌 =  −𝜆⁄         (1.39) 

Where 𝜆 is a suitable constant 

  
𝑇 = 𝑒−𝜆𝜏(1 − 𝑥)𝑦 𝑋′ 𝑋 =⁄ 𝜌(1 − 𝑦) 𝑦 − 𝜆⁄ }                   (1.40) 

Where j is some suitable constants  

   

𝑋 ∝ (1 − 𝑥)𝑗𝑌 ∝ (𝑦 − 𝜌/𝜌 + 𝑗)𝜆 𝜌+𝑗⁄ }                   (1.41) 

Time Dependent Parameters 

 Working in τ time, let us f replace by  

  𝜕𝑝 𝜕𝑡⁄ = (1 − 𝑥)𝑦 𝜕2𝑝 𝜕𝑥𝜕𝑦 + 𝜌(𝜏)(1 − 𝑦)⁄ 𝜕𝑝 𝜕𝑦⁄         (1.42) 

subject to the some initial condition as before. 
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 Let us write the probability generating function 

   𝑃(𝑥, 𝑦, 𝜏) = ∑ ∑ 𝑃𝑟𝑢(𝜏)𝑥𝑟𝑦𝑢𝑏𝑢=0𝑛𝑟=0                   (1.43) 

= ∑ (𝑛𝑗 ) (𝑥 − 1)𝑗𝑓𝑗(𝑦, 𝜏)𝑛
𝑗=0                               (1.44) 

Where 𝑓𝑗(𝑦, 𝜏) are to be determined. 

 Substituting (1.43) in (1.41) and equating coefficients of  (𝑥 − 1)𝑗 gives 

a simple linear first order partial differential equation for 𝑓𝑗(𝑦, 𝜏). 

   𝜕𝑓𝑗 𝜕𝜏⁄ + {(𝑗 + 𝜌)𝑦 − 𝜌} 𝜕𝑓𝑗 𝜕𝑦 = 0⁄        (1.45) 

      𝑑𝜏 𝜌⁄ = 𝑑𝑦 (𝑗 + 𝜌)𝑦 − 𝜌 = 𝑑𝑓𝑗 0⁄⁄         (1.46) 

Let us find two independent integrals of                 

One solution is 𝑓𝑗 = constant                               (1.47) 

and another solution is 𝑑𝑦 𝑑𝜏⁄ = (𝑗 + 𝜌)𝑦 − 𝜌                   (1.48) 

Multiplying through (1.47) by the integrating factor 

   𝜃𝑗(𝜏) = exp (−𝑗𝜏 − ∫ 𝜌(𝑣)𝑑𝑣)𝜏0 )   (1.49) 

Leads to the second integral 

   𝑦𝜃𝑗(𝜏) + ∫ 𝜌(𝑧)𝜃𝑗(𝑧)𝜏0 𝑑𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   (1.50) 

The general solution of (1.41) and (1.49). 
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The general solution of (1.44) as 

   𝑓𝑗 = 𝜑(𝑦𝜃𝑗(𝜏) + ∫ 𝜌𝜃𝑗𝜏0 𝑑𝑧)      (1.51) 

Where ϕ is an arbitrary function that can be determined from the initial 

conditions  

𝑃(𝑥, 𝑦, 0) = 𝑥𝑛𝑦𝑏 in (1.37) 

  𝑃(𝑥, 𝑦, 0) = 𝑥𝑛𝑦𝑏 

          = {1 + (𝑥 − 1)}𝑛𝑦𝑏 

           = ∑ (𝑛𝑗 )𝑛𝑗=0 (𝑥 − 1)𝑗𝑦𝑏  

       𝑓𝑗(𝑦, 0) = 𝑦𝑏 

𝜏 = 0 ⇒ 𝜙(𝑦) = 𝑓𝑗(𝑦, 0) = 𝑦𝑏 

  ∴  𝑓𝑗(𝑦, 𝜏) =  (𝑦𝜃𝑗(𝜏) + ∫ 𝜌(𝑧)𝜃𝑗𝜏0 (𝑧)𝑑𝑧))𝑏             (1.52) 

When  𝜃𝑗(𝜏) is defined in ( 1.48 ) 

Immigration of Susceptible and carriers: 

 Suppose that new susceptibles appear at a constant rate μ1 and that new 

carriers are introduced at a constant rate γ. 
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The deterministic equations are  

  
𝑑𝑥/𝑑𝑡 = − 𝛽𝑥𝑦 + 𝜇𝑑𝑥/𝑑𝑡 = − 𝛾𝑦 + 𝛿 }      (1.53) 

With initial condition x = n , y = b , t = 0. 

Setting the differential coefficients equal to zero gives 

 𝑥0 = 𝛾𝑢/𝛽𝛿  , 𝑦0 =  𝛿/𝛾. 
Getting  𝑦 =  𝛿/𝛾 + ( 𝑏 − 𝛿/𝛾)𝑒−𝛾𝑡                       (1.54)

   ⇒ 𝑒𝑥𝑝[−𝛽𝑣/𝛾𝑡 − 𝛽/𝛾(𝑏 − 𝛿/𝛾)𝑒−𝛾𝑡] 
+𝜇/𝛾 𝑒𝑥𝑝[−𝛽𝛿/𝛾𝑡 − 𝛽/𝛾(𝑏 − 𝛿/𝛾)𝑒−𝛾𝑡] 

     ∫ [−𝛽𝛿/𝛾2 − 1𝑒−𝛽/𝛾(𝑏−𝛿/𝛾)𝜉 𝑑𝜉]𝑒−𝛾𝑡1            

(1.55) 

Also  𝜕𝑝 𝜕𝑡 = 𝛽(1 − 𝑥)𝑦𝜕2𝑝/𝜕𝑥𝜕𝑦 + 𝛼(1 − 𝑦) 𝜕𝑝 𝜕𝑦⁄⁄  

     +[𝜇(𝑥 − 1) + 𝛿(𝑦 − 1)]𝑃             

(1.56) 

When   

   
𝑃(𝑥, 𝑦, 𝑡) = ∑ 𝑃𝑟𝑢(𝑡)𝑥𝑟𝑦𝑢𝑃(𝑥, 𝑦, 0) = 𝑥𝑛𝑢𝑏 }     (1.57) 
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Suppose  

   𝑃(𝑥, 𝑦, 𝑡) = ∑ (𝑥 − 1)𝑗𝑓𝑗(𝑦, 𝑡)∞𝑗=0    (1.58) 

Substituting (1.56) in (1.54) and equating coefficients of (𝑥 − 1)𝑗 given. 

  𝜕𝑓𝑗/𝜕𝑡 + {𝑗𝛽 + 𝛾)𝑦 − 𝛾}𝜕𝑓𝑗/𝜕𝑦 + 𝛿(1 − 𝑦)𝑓𝑗 = 𝜇𝑓𝑗−1.      (1.59) 

The marginal probability generating function of the number of carriers is 

   𝑃(1, 𝑦, 𝑡) = 𝑓0(𝑦, 𝑡)     (1.60) 

and the relevant partial differential equation with j = 0 is  

  𝜕𝑓0/𝜕𝑡 + 𝛾(𝑦 − 1)𝜕𝑓0/𝜕𝑦 = 𝛿(𝑦 − 1)𝑓0      (1.61) 

   
(𝑦 − 1)𝑒−𝛾𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑓0𝑒−𝛿𝑦/𝛾       = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡}     (1.62) 

            𝑓0(𝑦, 𝑡) = 𝑒𝛿𝑦/𝛾𝜙{(𝑦 − 1)𝑒−𝛾𝑡}   (1.63) 

When ϕ is an arbitrary function to be determined from the initial condition  

    𝑓0(𝑦, 0) = 𝑦𝑏      (1.64) 

Using (1.55) and (1.58) 

Putting t = 0 and (y – 1) = η in (1.61), and using (1.62) 

   𝜙(𝜂) = (1 + 𝜂)𝑏𝑒−𝛿(1+𝜂)/𝛾     (1.65) 

∴  𝑓0(𝑦, 𝑡) = (1 + (𝑦 − 1)𝑒−𝛾𝑡)𝑏exp (𝛿/𝛾(𝑦 − 1)(1 − 𝑒−𝛾𝑡))  (1.66) 
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The average number of carriers π is 

  𝜋 = 𝛿/𝛾 + ( 𝑏 − 𝛿/𝛾)𝑒−𝛾𝑡     (1.67) 

As t → ∞ ( 1.64) ⇒ 

   𝑓0(𝑦, ∞) = exp (𝛿/𝛾(𝑦 − 1))     (1.68) 

So that the carrier distribution tends to a Poisson distribution with parameter               

δ / γ. 
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CHAPTER II 

A CONTRIBUTION TO THE MATHEMATICAL THEORY OF 

EPIDEMICS 

Introduction 

 If  one consider two population identical in respect of their densities their 

recovery and death rates but differing in respect of their infectivity rates it will 

appear that epidemic in the population with the higher infectivity rate may be 

great as compared with those in the population with the lower infectivity rate. If 

the density of the former population is in the neighbourhood of the threshold 

value. 

 The density of a particular population is normally very close to its 

threshold density it will be comparatively free from epidemic but if this state is 

upset either by a slight increase in population density or by a slight increase in 

the infectivity rate a large epidemic may break out. 

 It will appear that a similar stable of affairs holds with respect to diseases 

with are transmitted through an intermediate host. The product of the two 

population densities is the determining factor and no epidemic can occur when 

the product falls below a certain threshold value. 
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 Assume that a certain number 𝑦0  of the population have just been 

infected although this infection is naturally dependent on some process outside 

that defined by equation. Thus 

    𝑣0.0 = 𝑣0 + 𝑦0     (2.1) 

  If 𝜓𝜃denote the rate of removal he sum of recovery and death rates, 

then the number who are removed from each 𝜃 group at the end of the interval 𝑡 
is 𝜓𝜃 , 𝑣𝑡,𝜃 and this is clearly equal to 𝑣𝑡,𝜃 − 𝑣𝑡+1,𝜃+1. Thus 

                                𝑣𝑡,𝜃 = 𝑣𝑡−1,𝜃−1(1 − 𝜓(𝜃 − 1)) 
                                        = 𝑣𝑡−2,𝜃−2 (1 − 𝜓(𝜃 − 1)(1 − 𝜓(𝜃 − 2)))          (2.2) 

             = 𝑣𝑡−𝜃,0𝐵𝜃 

 

Where 𝐵𝜃 is the product (1 − 𝜓(𝜃 − 1))(1 − 𝜓(𝜃 − 2),……… .1 − 𝜓(0)). 
Now 𝑣𝑡 denotes the number of persons in unit area infected at the interval 𝑡 and 

this must be equal to 𝑥𝑡 
1

t

 𝜙𝜃𝑣𝑡,𝜃 where 𝑥𝑡denote the number of individuals 

still unaffected and 𝜙𝜃 is the rate of infectivity at age 𝜃. 

 It clear that, 

𝑥𝑡 = 𝑁 −∑𝑣𝑡,0𝑡
0  

= 𝑁 −∑𝑣𝑡 − 𝑦0𝑡
0                                         (2.3) 
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𝑁 is the initial population density. 

 If 𝑧𝑡 denotes the number who have been removed by recovery and death 

then 

    𝑥𝑡 + 𝑦𝑡 + 𝑧𝑡 = 𝑁       (2.4) 

Then, 

𝑣𝑡 = 𝑥𝑡∑𝜙𝜃𝑡
1 𝑣𝑡,𝜃 = 𝑥𝑡∑𝜙𝜃𝑡

1 𝐵𝜃𝑣𝑡−𝜃,0 

= 𝑥𝑡 (∑𝐴𝜃𝑡
1 𝑣𝑡−𝜃 + 𝐴𝑡𝑦0)                                            (2.5) 

Also, 

𝑦𝑡 =∑𝑣𝑡,𝜃𝑡
0 =∑𝐵𝜃𝑣𝑡−𝜃 + 𝐵𝑡𝑦0𝑡

0                                                        (2.6) 
By definition, 

−𝑣𝑡 = 𝑥𝑡+1 − 𝑥𝑡                                                                                         (2.7) 
𝑥𝑡 − 𝑥𝑡+1 = 𝑥𝑡 (∑𝐴𝜃𝑡

1 𝑣𝑡−𝜃 + 𝐴𝑡𝑦0)                                                             (2.8) 
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 Also 𝑧𝑡+1 − 𝑧𝑡 is the number of person. The interval of time 𝑡 and this is 

equal to 𝑥𝑡 
1

t

 𝜓𝜃𝑣𝑡,𝜃  to 𝑥𝑡 
1

t

 𝜓𝜃𝐵𝜃𝑣𝑡−𝜃 + 𝜓𝑡𝐵𝑡𝑦0 

𝑧𝑡+1 − 𝑧𝑡 =∑𝐶𝜃𝑡
1 𝑣𝑡−𝜃 + 𝐶𝑡𝑦0                                                                     (2.9) 

𝑦𝑡+1 − 𝑦𝑡 = 𝑥𝑡 [∑𝐴𝜃𝑡
1 𝑣𝑡−𝜃 + 𝐴𝑡𝑦0] − [∑𝐶𝜃𝑡

1 𝑣𝑡−𝜃 + 𝐶𝑡𝑦0]                         
Then in the limit the above equation becomes 

  𝑥𝑡 + 𝑦𝑡 + 𝑧𝑡 = 𝑁          (2.10) 

𝑣𝑡 = −𝑑𝑥𝑡𝑑𝑡                                                                         (2.11) 
𝑑𝑥𝑡𝑑𝑡 = −𝑥𝑡 [∫𝐴𝜃𝑣𝑡−𝜃𝑑𝜃 + 𝐴𝑡𝑦0𝑡

0 ]                                                            (2.12) 
𝑑𝑧𝑡𝑑𝑡 = ∫𝐶𝜃𝑣𝑡−𝜃𝑑𝜃 + 𝐶𝑡𝑦0𝑡

0                                                                        (2.13) 
𝑦𝑡 = ∫𝐵𝜃𝑣𝑡−𝜃𝑑𝜃 + 𝐵𝑡𝑦0𝑡

0                                                                      (2.14) 
where 𝐵𝜃 = 𝑒−∫ 𝜓(𝑎)𝑑𝑎𝜃0 , 𝐴𝜃 = 𝜙𝜃𝐵𝜃  and 𝐶𝜃 = 𝜓𝜃𝐵𝜃 . By equation (2.13) 

dropping the suffix 𝑡 except when necessary in the analysis 



30 

 

                        𝑑𝑥𝑑𝑡 = −𝑥 [∫𝐴𝜃𝑣𝑡−𝜃𝑑𝜃 + 𝐴𝑡𝑦0𝑡
0 ] 

= −𝑥 [∫𝐴𝑡−𝜃𝑣𝜃𝑑𝜃 + 𝐴𝑡𝑦0𝑡
0 ]                                     

= −𝑥 [∫𝐴𝑡−𝜃 𝑑𝑥𝜃𝑑𝜃 𝑑𝜃 + 𝐴𝑡𝑦0𝑡
0 ]                                                 (2.15) 

Therefore, 

                      𝑑𝑙𝑜𝑔𝑥𝑑𝑡 = 𝐴𝑡−𝜃𝑥𝜃|0𝑡 −∫ 𝑥𝜃 𝑑𝐴𝑡−𝜃𝑑𝜃𝑡
0 𝑑𝜃 − 𝐴𝑡𝑦0 

                                      = 𝐴0𝑥𝑡 − 𝐴𝑡𝑥0 +∫ 𝑥𝜃𝐴𝑡−𝜃′
𝑡
0 𝑑𝜃 − 𝐴𝑡𝑦0 

Where 𝐴𝑡−𝜃′ = 𝑑𝐴𝑡−𝜃𝑑(𝑡−𝜃) = − 𝑑𝐴𝑡−𝜃𝑑𝜃 . 

 But 𝐴0 = 𝜙0, 𝐵0 = 𝜙0 = 0. Since 𝐴𝑛 individual at the moment of 

bocoming infected cannot transmit infection. 

 Hence, 

𝑑𝑙𝑜𝑔𝑥𝑑𝑡 = −𝐴𝑡(𝑥0 + 𝑦0) + ∫ 𝑥𝜃𝐴𝑡−𝜃′
𝑡
0 𝑑𝜃

−𝐴𝑡𝑁 +∫ 𝐴𝜃′ 𝑥𝑡−𝜃𝑡
0 𝑑𝜃 }  

                              (2.16) 
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 An integral equation similar to Volterra’s equation, 

                                           𝑓(𝑡) = 𝜙(𝑡) + ∫ 𝑁(𝑡, 𝜃)𝜙(𝜃)𝑑𝜃𝑡
0  

𝑑𝑙𝑜𝑔𝑥𝑑𝑡 = 𝐴𝑡 + 𝜆∫ 𝑁(𝑡, 0)𝑥(𝜃)𝑑𝜃𝑡
0         

Used in resolving Volterra equation 

                       𝑥 = 𝑓0(𝑡) + 𝜆𝑓1(𝑡) + 𝜆2𝑓2(𝑡)+.………. 
Substituting this expression in the equation 

𝑑𝑥𝑑𝑡 = 𝑥 [𝐴𝑡 + 𝜆∫ 𝑁(𝑡, 𝜃)𝑥(𝜃)𝑑𝜃𝑡
0 ] 

and equating the coefficient of the power of 𝜆. 

𝑑𝑑𝑡  𝑓𝑛(𝑡) = 𝑓𝑛(𝑡)𝐴𝑡 + 𝑓𝑛−1(𝑡)∫ 𝑁(𝑡, 𝜃)𝑓0(𝜃)𝑑𝜃𝑡
0 + 𝑓𝑛−2(𝑡)∫ 𝑁(𝑡, 𝜃)𝑓1(𝜃)𝑑𝜃𝑡

0  

+.……… .+𝑓0(𝑡)∫ 𝑁(𝑡, 𝜃)𝑓𝑛−1(𝜃)𝑑𝜃𝑡
0  

= 𝐿𝑛−1(𝑡) 
 This is a differential equation for 𝑓𝑛(𝑡) of which the solution’s 

                   𝑓𝑛(𝑡)𝑒−∫ 𝐴𝑡𝑑𝑡𝑡0 = ∫ 𝐿𝑛−1(𝑡)𝑡0 𝑒−∫ 𝐴𝑡𝑑𝑡𝑡0 𝑑𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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 Also 𝑓𝑛(0) is zero (𝑛 > 0). Since the initial condition are presumably 

independent of  𝜆. Hence the constants of integration are all zero except 𝑓0(0). 𝑑𝑓0(𝑡)𝑑𝑡 = 𝑓0(𝑡)𝐴𝑡                
𝑓0(𝑡) = 𝑓0(0)𝑒∫ 𝐴𝑡𝑑𝑡𝑡0  

So that 𝑓0(0) = 𝑥0. The integral equation 

𝑥 = 𝑥0𝐸𝑡 +∑𝜆𝑛𝐸𝑡∫ 𝐿𝑛−1(𝑡)𝐸𝑡𝑡
0

∞

𝑛=1  𝑑𝑡 
= 𝐸𝑡 [𝑥0 +∑𝜆𝑛∫ 𝐿𝑛−1(𝑡)𝐸𝑡𝑡

0
∞

𝑛=1  𝑑𝑡] 
𝑥 = 𝐸𝑡 [𝑥0 +∑∫ 𝐿𝑛−1(𝑡)𝐸𝑡𝑡

0
∞

𝑛=1  𝑑𝑡]                                    (2.17) 
𝑑𝑙𝑜𝑔𝑥𝑑𝑡 = 𝐴𝑡 +∫ 𝑄𝑡−𝜃𝑥𝜃𝑑𝜃𝑡

0                                                                   
 Multiplying both side by 𝑒−𝑧𝑡  where the real part of 𝑧 is positive and 

integrating with respect to t between the limits zero and infinity 

∫ 𝑒−𝑧𝑡  𝑑𝑙𝑜𝑔𝑥𝑑𝑡∞

0 𝑑𝑡 = ∫ 𝑒−𝑧𝑡𝐴𝑡∞

0 𝑑𝑡 + ∫ 𝑒−𝑧𝑡∞

0 ∫ 𝑄𝑡−𝜃𝑥𝜃𝑑𝜃∞

0  𝑑𝑡                      
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Therefore 

−𝑙𝑜𝑔 𝑥0 + ∫ 𝑧 𝑒−𝑧𝑡 𝑙𝑜𝑔 𝑥∞

0 𝑑𝑡 = 𝐹(𝑧) + ∫ 𝑒−𝑧𝑡𝑄𝜃𝑑𝜃∞

0 ∫𝑒−𝑧𝑡 𝑥𝑡 𝑑𝑡∞

0                     
                          = 𝐹(𝑧) + 𝐹1(𝑧)∫ 𝑒−𝑧𝑡 𝑥𝑡 𝑑𝑡∞

0                    (2.18) 
where 𝐹(𝑧) is written for ∫ 𝑒−𝑧𝑡𝐴𝑡∞0 𝑑𝑡 and 𝐹1(𝑧) for ∫ 𝑒−𝑧𝜃𝑄𝜃𝑑𝜃∞0 . 

 Thus, 

∫𝑒−𝑧𝑡(𝑧 𝑙𝑜𝑔 𝑥 − 𝐹(𝑧)𝑥)𝑑𝑡 = 𝐹(𝑧) + 𝑙𝑜𝑔 𝑥0∞

0  

∫𝜙(𝑥, 𝑧)𝜓(𝑧, 𝑡)𝑑𝑡 = 𝜒(𝑧)∞

0                                      (2.19) 
where the functions 𝜙,𝜓 and 𝜒 are known and 𝑥 is a function of 𝑡. 𝑧 may have 

any value provided that its real part is positive. 

−∫  𝑑𝑙𝑜𝑔𝑥𝑑𝑡∞

0 𝑑𝑡 = ∫∫𝐴𝜃𝑣𝑡−𝜃𝑑𝜃𝑡
0 𝑑𝑡 + 𝑦0∫𝐴𝑡∞

0
∞

0 𝑑𝑡                           
                      𝑙𝑜𝑔 𝑥0𝑥∞

 = ∫ 𝐴𝜃𝑑𝜃∫ 𝑣𝑡∞

0 𝑑𝑡 + 𝑦0∫𝐴𝑡∞

0
∞

0 𝑑𝜃     
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Put A for ∫ 𝐴𝑡∞0 𝑑𝑡 and use the relation, 

∫𝑣𝑡𝜃
0 𝑑𝑡 = −∫ 𝑑𝑥𝑑𝑡  𝑑𝑡 = 𝑥0 − 𝑥∞

∞

0  

𝑙𝑜𝑔 𝑥0𝑥∞
= 𝐴(𝑥0 − 𝑥∞) + 𝐴𝑦0 = 𝐴(𝑁 − 𝑥∞) 

 Let us introduce the value 𝑝 = 𝑁−𝑥∞𝑁 , Then 𝑥∞ = 𝑁(1 − 𝑝)  and 

𝑙𝑜𝑔 1−𝑝1−𝑦0 𝑁⁄ = 𝐴𝑁𝑝                                          (2.20) 

 This equation determines the size of the epidemic in terms of 𝐴,𝑁 and 𝑦0. 

The equation (2.15) in a similar manner, 

∫𝑦𝑡∞

0 𝑑𝑡 = 𝑁𝑝∫𝐵𝜃𝑑𝜃∞

0  

Thus ∫ 𝐵𝜃𝑑𝜃∞0  is the average case duration. 

−∫ 𝑒−𝑧𝑡  𝑑𝑙𝑜𝑔𝑥𝑑𝑡∞

0 𝑑𝑡 = ∫ 𝑒−𝑧𝑡∞

0 ∫𝐴𝜃𝑣𝑡−𝜃𝑑𝜃𝑡
0 𝑑𝑡 + 𝑦0∫ 𝑒−𝑧𝑡𝐴𝑡∞

0 𝑑𝑡         
                                                   = ∫ 𝑒−𝑧𝑡∞

0 𝐴𝜃𝑑𝜃∫ 𝑒−𝑧𝑡𝑣𝑡∞

0 𝑑𝑡 + 𝑦0∫ 𝑒−𝑧𝑡𝐴𝑡∞

0 𝑑𝑡         
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Therefore, 

∫ 𝑒−𝑧𝑡𝐴𝑡𝑑𝑡 =∞

0
−∫ 𝑒−𝑧𝑡  𝑑𝑙𝑜𝑔𝑥𝑑𝑡  𝑑𝑡∞0𝑦0 + ∫ 𝑒−𝑧𝑡𝑣𝑡𝑑𝑡∞0                                          (2.21) 

𝐴𝜃 = 12𝜋𝑖 ∫ 𝑒𝑧𝑡 𝐹2(𝑧)𝑑𝑡𝑎+𝑖∞
𝑎−𝑖∞                                       (2.22) 

By Equation (2.15)  

∫ 𝑒−𝑧𝑡𝑦𝑡𝑑𝑡∞

0 = ∫ 𝑒−𝑧𝑡∫𝐵𝜃𝑣𝑡−𝜃𝑑𝜃𝑡
0 𝑑𝑡∞

0 + 𝑦0∫ 𝑒−𝑧𝑡𝐵𝑡𝑑𝑡∞

0  

∫ 𝑒−𝑧𝑡𝐵𝑡𝑑𝑡 =∞

0
∫ 𝑒−𝑧𝑡 𝑦𝑡 𝑑𝑡∞0𝑦0 + ∫ 𝑒−𝑧𝑡𝑣𝑡𝑑𝑡𝑡0                                          (2.23) 

𝐵𝜃 = 12𝜋𝑖 ∫ 𝑒𝑧𝑡 𝐹3(𝑧)𝑑𝑡𝑎+𝑖∞
𝑎−𝑖∞                                       (2.24) 

 If 𝐹2(𝑧) and 𝐹3(𝑧) can be expressed as rational function of  𝑧, then in 

place of Laplace’s transformation. 
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Special Cases: 

The earlier stage of an epidemic in a large population: 

 During an earlier stage of an epidemic in a large population, the number 

of unaffected persons may be considered to be constant. Since any alteration is 

small in comparison with total number. 

−𝑑𝑥𝑑𝑡 = 𝑣𝑡 = 𝑁 [∫𝐴𝜃𝑣𝑡−𝜃𝑑𝜃 + 𝐴𝑡𝑦0∞

0 ] 
 Where 𝑁 is this constant population per unit area using Fock’s method. 

∫ 𝑒−𝑧𝑡𝑣𝑡𝑑𝑡 =∞

0
𝑁𝑦0 ∫ 𝑒−𝑧𝑡 𝐴𝑡 𝑑𝑡∞01 − 𝑁∫ 𝑒−𝑧𝑡𝐴𝑡𝑑𝑡∞0                                          (2.25) 

𝑣𝑡 = 12𝜋𝑖 ∫ 𝑒𝑧𝑡 𝐹4(𝑧)𝑑𝑡𝑎+𝑖∞
𝑎−𝑖∞                                            (2.26) 

              ∫ 𝑒−𝑧𝑡 𝑦𝑡∞

0 𝑑𝑡 = ∫ 𝑒−𝑧𝑡∞

0 ∫𝐵𝜃𝑣𝑡−𝜃𝑑𝜃𝑡
0 𝑑𝑡 + 𝑦0∫ 𝑒−𝑧𝑡𝐵𝑡∞

0 𝑑𝑡         
                                             = ∫ 𝑒−𝑧𝑡𝑣𝑡∞

0 𝑑𝑡∫ 𝑒−𝑧𝜃∞

0 𝐵𝜃𝑑𝜃 + 𝑦0∫ 𝑒−𝑧𝑡𝐵𝑡∞

0 𝑑𝑡         
   = 𝑁𝑦0 ∫ 𝑒−𝑧𝑡 𝐴𝑡 𝑑𝑡∞0 ∫ 𝑒−𝑧𝑡 𝐵𝑡 𝑑𝑡∞01 − 𝑁∫ 𝑒−𝑧𝑡𝐴𝑡𝑑𝑡∞0 + 𝑦0∫ 𝑒−𝑧𝑡 𝐵𝑡 𝑑𝑡∞

0  



37 

 

  = 𝑦0 ∫ 𝑒−𝑧𝑡 𝐵𝑡 𝑑𝑡∞01 − 𝑁 ∫ 𝑒−𝑧𝑡𝐴𝑡𝑑𝑡∞0                                               (2.27) 
Thus, 

𝑦𝑡 = 12𝜋𝑖 ∫ 𝑒𝑧𝑡 𝐹5(𝑧)𝑑𝑡𝑎+𝑖∞
𝑎−𝑖∞                                            (2.28) 

𝑦𝑡 = ∫𝐵𝑡−𝜃𝑣𝜃𝑑𝜃𝑡
0 + 𝐵𝑡𝑦0            

= 𝑁∫𝐵𝜃−𝑡 (∫𝐴𝜃−𝑧𝑣𝑧𝑑𝑧𝜃
0 + 𝐴𝜃𝑦0)𝑑𝜃𝑡

0 + 𝐵𝑡𝑦0              
𝑦𝑡 = 𝑁∫𝐵𝑡−𝜃∫𝐴𝜃−𝑧𝑣𝑧𝑑𝑧𝑑𝜃𝜃

0 +𝑁𝑦0∫𝐵𝑡−𝜃𝐴𝜃𝑑𝜃𝑡
0

𝑡
0 + 𝐵𝑡𝑦0 

= 𝑁∫𝐴𝑡−𝜃∫𝐵𝜃−𝑧𝑣𝑧𝑑𝑧𝑑𝜃𝜃
0 +𝑁𝑦0∫𝐴𝑡−𝜃𝐵𝜃𝑑𝜃𝑡

0
𝑡
0 + 𝐵𝑡𝑦0 

= 𝑁∫𝐴𝑡−𝜃(𝑦0 − 𝐵𝜃𝑦0 + 𝐵𝜃𝑦0)𝑡
0 𝑑𝜃 + 𝐵𝑡𝑦0                      

= 𝑁∫𝐴𝑡−𝜃𝑦0𝑡
0 𝑑𝜃 + 𝐵𝑡𝑦0                                          (2.29) 
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The equation for 𝑣𝑡,0 was given as, 

                                            𝑣𝑡,0 = ∫𝐴𝜃𝑣𝑡−𝜃,0𝑑𝜃𝑡
0  

𝑣𝑡,0 = 12𝜋𝑖 ∫ 𝑒𝑧𝑡  𝑁01 − ∫ 𝑒−𝑧𝜃𝐴𝜃𝑑𝜃∞0 𝑑𝑧𝑎+𝑖∞
𝑎−𝑖∞                           

 Thus 𝑣𝑡,0 = 𝑣𝑡 except in the short interval of time 0 to ∈ and during this 

interval the integral equation does not hold. But instead ∫ 𝑣𝑡,0 𝑑𝑡∈0  is equal to 𝑦0. 

 Thus, 𝑣𝑡,0 = 𝑣𝑡,0 − 𝑣∈,0 + 𝑣∈,0 

= ∫𝐴𝑡−𝜃𝑡
∈ 𝑣𝜃,0𝑑𝜃 +∫𝐴𝑡−𝜃∈

0 𝑣𝜃,0𝑑𝜃                                          
 = ∫𝐴𝑡−𝜃𝑡

0 𝑣𝜃𝑑𝜃 + 𝐴𝑡−∈′ ∫𝑣𝜃,0∈
0 𝑑𝜃  𝑤ℎ𝑒𝑟𝑒 0 <∈′<∈         

= ∫ 𝐴𝑡−𝜃𝑡
0 𝑣𝜃,0𝑑𝜃 + 𝐴𝑡𝑦0𝜃                                                       

 Then, 

𝑣𝑡,0 = 12𝜋𝑖 ∫ 𝑒𝑧𝑡 𝐹(𝑧)𝑑𝑧𝑎+𝑖∞
𝑎−𝑖∞                                                            
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Where 

𝐹(𝑧) = 𝑦01 − ∫ 𝑒−𝑧𝜃𝐴𝜃𝑑𝜃∞0              
 Let us denote this by 

𝑦01−𝐴. 

 In the new form, 

𝐹4(𝑧) = −𝑦0 + 𝑦01 − 𝐴 = 𝐴𝑦01 − 𝐴    
 Now if 𝑣𝑡  has no singularities, the Laplacian solution of 𝐹4(𝑧)  is a 

function with no singularities and so the Laplacian of 𝑦0  corresponds to the 

singularity. 

 The  Laplacian solution 
12𝜋𝑖 ∫ 𝑒𝑧𝑡 (−𝑦0)𝑑𝑧𝑎+𝑖∞𝑎−𝑖∞  corresponds to a function 

at the origin that ∫ 𝜙(𝑡)𝑑𝑡∈0  tends to 𝑦0 as ∈ tends to zero. 

 The expression 
12𝜋𝑖 ∫ 𝑒𝑧𝑡 (−𝑦0)𝑑𝑧𝑎+𝑖∞𝑎−𝑖∞  may be taken as representing a 

function with same properties as 𝑣𝑡 − 𝑣𝑡,0.  

∫(𝑣𝑡 − 𝑣𝑡,0)∈
0 𝑑𝑡 = −𝑦0 

when ∈ becomes very small. 
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The values 𝐴𝜃 and 𝐵𝜃 from observed values of 𝑣𝑖 and 𝑦𝑡 
𝐴𝜃 = 12𝜋𝑖 ∫ 𝑒𝑧𝑡  ∫ 𝑒−𝑧𝑡𝑣𝑡𝑑𝑡∞0𝑁𝑦0 +𝑁∫ 𝑒−𝑧𝑡𝑣𝑡𝑑𝑡∞0 𝑑𝑧𝑎+𝑖∞

𝑎−𝑖∞                     (2.30) 
and 

𝐵𝜃 = 12𝜋𝑖 ∫ 𝑒𝑧𝑡  ∫ 𝑒−𝑧𝑡𝑦𝑡𝑑𝑡∞0𝑦0 +𝑁∫ 𝑒−𝑧𝑡𝑣𝑡𝑑𝑡∞0 𝑑𝑧𝑎+𝑖∞
𝑎−𝑖∞                     (2.31) 

 If 𝐹(𝑧) can be expressed as a rational function of the form 
𝜓𝑛(𝑧)𝜓𝑚(𝑧) where 𝜓𝑛  and 𝜓𝑚  are polynomials of degree 𝑛 and 𝑚 respectively and 𝑛 is less than 𝑚. Then it is always possible to express 𝐹(𝑧) in the form ∑∑ 𝐴𝑟,𝑠(𝑧−𝛼𝑟)𝑠 where 𝑟 

and 𝑠 vary from unity to 𝑎 and 𝑏 respectively and 𝑎 and 𝑏 have finite values. 

 But ∫ 𝑒−𝑧𝑡𝑒𝑎𝑡𝑡𝑐𝑑𝑡∞0 = 𝑐!(𝑧−𝛼)𝑐+1 
∫𝑒−𝑧𝑡𝜙(𝑡)𝑑𝑡∞

0 =∑∑ 𝐴𝑟,𝑠(𝑧 − 𝛼𝑟)𝑠                                                                  
𝜙(𝑡) =∑∑ 𝐴𝑟,𝑠(𝑠 − 1)! 𝑡𝑠−1𝑒𝑎,𝑡                                                   

Constant Rates: 

 The special case in which 𝜙 and 𝜓 are constants 𝑘 and 𝑙 respectively. 

The equations are, 
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𝑑𝑥𝑑𝑡 = −𝑘𝑥𝑦      𝑑𝑦𝑑𝑡 = 𝑘𝑥𝑦 − 𝑙𝑦𝑑𝑧𝑑𝑡 = 𝑙𝑦             }  
                                                           (2.32) 

and 𝑥 + 𝑦 + 𝑧 = 𝑁 

Then 
𝑑𝑧𝑑𝑡 = 𝑙(𝑁 − 𝑥 − 𝑧) and 

𝑑𝑥𝑑𝑧 = − 𝑘𝑙 𝑥, 𝑙𝑜𝑔 𝑥0𝑥 = 𝑘𝑙 𝑧. 

Assume that 𝑧0 is zero. 

𝑑𝑧𝑑𝑡 = 𝑙(𝑁 − 𝑥0𝑒−𝑘 𝑙⁄ 𝑧 − 𝑧) 
Assume that 𝑘 𝑙⁄ 𝑧 is small compared with unity. 

𝑑𝑧𝑑𝑡 = 𝑙 {𝑁 − 𝑥0 + (𝑘 𝑙⁄ 𝑥0 − 1)𝑧 − 𝑥0𝑘2𝑧22𝑙2 } 

But 𝑁 − 𝑥0 = 𝑦0 where 𝑦0 is small. The solution of this equation is, 

𝑧 = 𝑙2𝑘2𝑥0 {𝑘𝑙 𝑥0 − 1 + √−𝑞 tanh√−𝑞2 𝑙𝑡 − 𝜙}              (2.33) 
where 𝜙 = tanh−1 𝑘𝑙𝑥0−1√−𝑞  and √−𝑞 = {(𝑘𝑙 𝑥0 − 1)2 + 2𝑥0𝑦0  𝑘2𝑙2 }12 
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CHAPTER III 

A SIMPLE STOCHASTIC EPIDEMIC  

Introduction 

 The usual deterministic epidemic curve gives the rate of change with 

respect to time of the total number of cases. While the most appropriate 

stochastic analogues is probably the curve of the rate of change with respect to 

time of the stochastic mean. In some process stochastic means are identical with 

deterministic values but this is not the case is epidemic process. It is worth 

remarking in parsing that the rather unexpected smoothness of observed 

epidemic curve is most likely to be due to the partial ironing out of statistical 

variations by summation over finite periods of time and by summation over 

relatively isolated epidemic occurring simultaneously is subgroup of the main 

population. 

 In which none of the infected individuals is removed from circulation by 

death recovery or isolated. This is admittedly on over – simplification but apart 

from providing a possible basis for more extensive investigations.  

 The analytical difficulties present in the treatment of the simple epidemic 

appear here in a more from through it has proved possible to compute the 

frequency distribution of the total size of the epidemic for moderate group given 

the ratio of removal to infected rate. An important result is the problem of the of 

the distribution of multiple cases of disease in a household and a method is 
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given for obtaining maximum – likelihood estimates of the ratio of the removal 

to infection rate. 

The Importance of Stochastic Means in Epidemics 

 Let us assume that the probability of a new case occurring in a small 

interval of time is proportional to both the number of susceptible and the 

number of infectious individual. 

 These original epidemic are not necessarily in phase and often interact 

with each other. Consider a single town or district. Each here it is obvious that a 

given infectious individual has not the same change of infecting each inhabitant. 

In close contact with a small number of people only perhaps of the order of 10 – 

50 depending on the nature of his activities. The whole district will there be 

built from epidemic taking place in several relatively small group of associates 

and acquaintance. 

 The co – efficient of variation of the total number of cases will be 
1√𝑘 

times the co – efficient of variation of any one of the groups. The larger the 

value of k. The more nearly will the curve of the total number of cases approach 

in shape the curve of the stochastic mean for a population of size 𝑛 and expect 

the overall epidemic curve to approach in shape the curve of the rate of change 

with respect to time of the stochastic mean. 
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Deterministic treatment of a simple epidemic 

 Let 𝑦 be the number of susceptibles at time 𝑡 and let 𝛽 be the infection 

rate. Then the number of new infections in time 𝑑𝑡 is 𝑝𝑦(𝑛 − 𝑦 + 1)𝑑𝑡 replace 𝑡 by  𝛽𝑡. The deterministic differential equation is 𝑑𝑦𝑑𝑡 = −𝑦(𝑛 − 𝑦 + 1) 
 Initial condition 𝑦 = 𝑛 when 𝑡 = 0. The solution is 𝑦 = 𝑛(𝑛 + 1) {𝑛 + 𝑒(𝑛+1)𝑡}⁄  

 Thus the deterministic epidemic curve is, 

𝑍 = −𝑑𝑦𝑑𝑡 = 𝑦(𝑛 − 𝑦 + 1) 
= 𝑛(𝑛 + 1)2𝑒(𝑛+1)𝑡{𝑛 + 𝑒(𝑛+1)𝑡}2                                       (3.1) 

 The curve reaches a maximum. When, 𝑡 = 𝑙𝑜𝑔 𝑛/(𝑛 + 1),     𝑦 = 1 2⁄ (𝑛 + 1)   &  𝑧 = 1 4⁄ (𝑛 + 1)2   
It is clearly symmetrical about  𝑡 = 𝑙𝑜𝑔 𝑛/(𝑛 + 1). 
 The latter does not seem to satisfy the apparent initial condition there 

must be misprint. 

Stochastic treatment of a simple epidemic 

(a) Solution of stochastic differential difference equation 

 Let us replacing 𝑡  by 𝛽𝑡  on the assumption of homogeneous mixing the 

probability of one now infection take the interval 𝑑𝑡 is 𝑦(𝑛 − 𝑦 + 1)𝑑𝑡. 
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 Suppose that 𝑝𝑟(𝑡)  is the probability that there are 𝑟  susceptibles still 

uninfected at time 𝑡. 
 The stochastic differential – difference equation 𝑑𝑝𝑟(𝑡)𝑑𝑡 = (𝑟 + 1)(𝑛 − 𝑟)𝑝𝑟+1(𝑡) − 𝑟(𝑛 − 𝑟 + 1)𝑝𝑟(𝑡),   𝑟 = 0,1,…… 𝑎𝑛𝑑                    𝑑𝑝𝑛(𝑡)𝑑𝑡 = − 𝑛𝑝𝑛(𝑡)                                                                    } (3.2) 
 Let us now use the Laplace transform and its inverse with respect to time 

given by 

𝜙∗(𝜆) = ∫ 𝑒−𝜆𝑡𝜙(𝑡)𝑑𝑡,∞
0                𝑅(𝜆) > 0,

𝜙(𝑡) = 12𝜋𝑖∫ 𝑒𝜆𝑡𝜙∗(𝜆)𝑑𝜆,𝑐+𝑖∞
𝑐−𝑖∞ }  

                            (3.3) 
where ∫ ≡𝑐+𝑖∞𝑐−𝑖∞ lim𝑤→∞∫𝑐+𝑖𝜔𝑐−𝑖𝜔 ,and 𝑐 is positive and greater than the abscissae of 

all the residues. Using the boundary condition          𝑝𝑟(0) = 1,      (𝑟 = 𝑛)                    = 0        (𝑟 < 𝑛) 
The recurrence relation 

𝑞𝑟 = (𝑟 + 1)(𝑛 − 𝑟)𝜆 + 𝑟(𝑛 − 𝑟 + 1) 𝑞𝑟+1,     𝑟 = (0,1, …………… . (𝑛 − 1)) 
and 

                                     𝑞𝑛 = 1𝜆 + 𝑛 

where 𝑞𝑟 = 𝑝𝑟∗ = ∫ 𝑒−𝜆𝑡𝑝𝑟(𝑡)𝑑𝑡∞0  
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                                      𝑞𝑟 = 𝑛! (𝑛 − 𝑟)!𝑟! ∏ (𝜆 + 𝑗(𝑛 − 𝑗 + 1))      0 ≤ 𝑟 ≤ 𝑛𝑛−𝑟+1
𝑗=1⁄   

 If  𝑟 ≥ 1 2⁄ (𝑛 + 1)  then the factor in the denominator are all different 

while if  𝑟 < 1 2⁄ (𝑛 + 1) some of the are repeated. 

 (𝜆 + 𝑛){𝜆 + 2(𝑛 − 1)}{𝜆 + 3(𝑛 − 2)}……… . {𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2 {𝜆 + (𝑟 + 1)(𝑛 − 𝑟)}2………× {𝜆 + (1 2⁄  𝑛 − 1)(1 2⁄  𝑛 + 2)}2 

       {𝜆 + 1 2⁄  𝑛(1 2⁄  𝑛 + 1)}2 for 𝑛 even 

and (𝜆 + 𝑛){𝜆 + 2(𝑛 − 1)}{𝜆 + 3(𝑛 − 2)}……… . {𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2 

{𝜆 + (𝑟 + 1)(𝑛 − 𝑟)}2………× {𝜆 + ( 𝑛 − 1)2 (𝑛 − 3)2 }2 

        {𝜆 + ( 𝑛+1)24 } for 𝑛 odd 

 Thus all terms after the (𝑟 − 1)𝑡ℎ are squared unless ‘𝑛’ is odd in which 

case the least term is not squared. 

 The denominator like {𝜆 + 𝑟(𝑛 − 𝑟 + 1)}  and {𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2  will 

give rise to, 𝑒𝑥𝑝{−𝑟(𝑛 − 𝑟 + 1)𝑡}  and 𝑡 𝑒𝑥𝑝{−𝑟(𝑛 − 𝑟 + 1)𝑡}  respectively. 

The coefficient of the latter terms are simply the coefficient of the 

corresponding terms in the expansion of 𝑞𝑟 in partial fractions. 

𝑞0 = (𝑛!)2[𝜆 (𝜆 + 𝑛)2 {𝜆 + 2(𝑛 − 1)}2………… . ]                                         (3.4) 
= 1𝜆 +∑{ 𝑘𝑟{𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2 + 𝑙𝑟{𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2}𝑟=1                (3.5) 
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where 

𝑘𝑟 = 𝑞0{𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2|𝜆=−𝑟( 𝑛−𝑟+1) = −(𝑛!)2(𝑛 − 2𝑟 + 1)2𝑟! (𝑟 − 1)! (𝑛 − 𝑟)! (𝑛 − 𝑟 + 1)! 
(3.6) 

 Now if the probability generating function is, 

𝜋(𝑥, 𝑡) =∑𝑥𝑟𝑝𝑟(𝑡)𝑛
𝑟=0                                                                                        (3.7) 

 Then it can seen from (3.7) that 𝜋(𝑥, 𝑡) satisfies the partial differential 

equation 𝜕𝜋𝜕𝑡 = (1 − 𝑥) {𝑛 𝜕𝜋𝜕𝑥 − 𝑥 𝜕2𝜋𝜕𝑥2}                                                               (3.8) 
 The boundary condition 

        𝜋(𝑥, 0) = 𝑥𝑛                 (3.9) 

 The equation for the moment generating function 𝑀(𝜃, 𝑡) are derived (3.8) 

& (3.9) writing 𝑥 = 𝑒𝜃, Then 𝜕𝑀𝜕𝑡 = (𝑒−𝜃 − 1) {(𝑛 + 1)𝜕𝑀𝜕𝜃 − 𝑥 𝜕2𝑀𝜕𝜃2 }                                                   (3.10) 
The boundary condition, 𝑀(𝜃, 0) = 𝑒𝑛𝜃                    (3.11) 

 Suppose that the 𝑟𝑡ℎ moment of the distribution of 𝑦 is 𝑚𝑟′  then, 

𝑀(𝜃) = 1 +𝑚1′𝜃 +𝑚2′ 𝜃22! + ⋯………… ..                                                   (3.12) 
 In  (3.10)  and equate coefficients of 𝜃  to give the following set of  

differential equation 
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𝑑𝑚1′𝑑𝑡 = −{(𝑛 + 1)𝑚1′ −𝑚2′ }                                                                                   𝑑𝑚2′𝑑𝑡 = +{(𝑛 + 1)𝑚1′ −𝑚2′ } − 2{(𝑛 + 1)𝑚2′ −𝑚3′ }                                         𝑑𝑚3′𝑑𝑡 = −{(𝑛 + 1)𝑚1′ −𝑚2′ } + 3{(𝑛 + 1)𝑚2′ −𝑚3′ } − 3{(𝑛 + 1)𝑚3′ −𝑚4′ }}  
  (3.13) 

 These equation while capable of giving the higher moment in term of 𝑚1′  
when the latter has been found. 

𝑚2′ = (𝑛 + 1)𝑚1′ + 𝑑𝑚1′𝑑𝑡                                                                            (3.14) 
are not so convenient for finding 𝑚1′  itself. Since all the moment are known 

when 𝑡 = 0. In fact, 

𝑚1′ = 𝑛 − 𝑛𝑡 − 𝑛(𝑛 − 2)2! 𝑡2 − 𝑛(𝑛2 − 8𝑛 + 8)3! 𝑡3+.… . . . …         (3.15) 
 The coefficient of 𝜃  in the partial differential equation for the moment 

generating function for the simple differential equation for atleast the early 

moments, fails to be of service in the case of stochastic epidemic processes. 

(b) Stochastic Mean Values 

 Let the transform of the probability – generating function be, 

𝜋∗(𝑥, 𝜆) =∑𝑥𝑟𝑞𝑟𝑛
𝑟=0                                                                            (3.16) 

The equation 

            𝜋∗(𝑥, 𝜆) = 1𝜆 

                +∑{ 𝑓𝑟(𝑥){𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2 + 𝑔𝑟(𝑥){𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2}𝑟=1                   (3.17) 
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where 𝑓𝑟(𝑥) and 𝑔𝑟(𝑥) are polynomial in 𝑥.Then, 

𝜋(𝑥, 𝑡) = 1 +∑{𝑡𝑓𝑟(𝑥) + 𝑔𝑟(𝑥)}𝑒−𝑟(𝑛−𝑟+1)𝑡𝑟=1                            (3.18) 
 Therefore, 

𝑚1′ (𝑡) = 𝜕𝜋𝜕𝑥 |𝑥=1 =∑{𝑡𝑓𝑟′(1) + 𝑔𝑟′ (1)}𝑒−𝑟(𝑛−𝑟+1)𝑡𝑟=1                          (3.19) 
 Now the transform of (3.8) show that 𝜋∗(𝑥, 𝜆)  satisfies the differential 

equation  

𝑥(1 − 𝑥)𝜕2𝜋𝜕𝑥2 − 𝑛(1 − 𝑥)𝜕𝜋∗𝜕𝑥 + 𝜆𝜋∗ = 𝑥𝑛                                         (3.20) 
Substitute (3.17) in (3.20) {𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2 and put 𝜆 = −𝑟(𝑛 − 𝑟 + 1) 
 𝑥(1 − 𝑥)𝑓𝑟′′ − 𝑛(1 − 𝑥)𝑓𝑟′ − 𝑟(𝑛 − 𝑟 + 1)𝑓𝑟 = 0          (3.21) 𝑓𝑟(𝑥) = 𝐶𝐹{−𝑟, −𝑛 + 𝑟 − 1,−𝑛, 𝑥}                                                            (3.22) 

  where 𝐹  is a terminating hypergeometric series and 𝐶  an arbitrary 

constant. Substituting this value in (3.22) differentiating with respect to 𝑥 and 

then putting 𝑥 = 1, gives  

      𝑓𝑟′(1) = 𝑘𝑟 𝑑𝐹𝑑𝑥 |𝑥=1 

                  = −𝑘𝑟  𝑟(𝑛 − 𝑟 + 1)𝑛  𝐹{−𝑟 + 1,−𝑛 + 𝑟;−𝑛 + 1,1} 
 Therefore, 

𝑓𝑟′(1) = 𝑛! (𝑛 − 2𝑟 + 1)2(𝑛 − 𝑟)! (𝑟 − 1)!                                                                                    (3.23) 
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 Specimen values of these co – efficient occurring in the expression for 𝑚1′ (𝑡) given by (3.19) are 𝑟 𝑓𝑟′(1)1 𝑛(𝑛 − 1)2234⋮
𝑛 (𝑛 − 1)(𝑛 − 3)2 1!⁄𝑛 (𝑛 − 1)(𝑛 − 2)(𝑛 − 5)2 2!⁄𝑛 (𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 7)2 3!⁄⋮ }   

                                    (3.24) 
 Substitute and multiply by {𝜆 + 𝑟(𝑛 − 𝑟 + 1)}2 differentiate with respect to 𝜆 and then put 𝜆 = −𝑟(𝑛 − 𝑟 + 1) 

  𝑥(1 − 𝑥)𝑔𝑟′′ − 𝑛(1 − 𝑥)𝑔𝑟′ − 𝑟(𝑛 − 𝑟 + 1)𝑔𝑟 = −𝑓𝑟                   

 (3.25)  

 Let us derive the series solution for 𝑔𝑟(𝑥) in terms of the known 𝑓𝑟(𝑥) 𝑔1′(1) = 𝑛 − 𝑛(𝑛 − 1) (1 + 12 + 13 +⋯……+ 1𝑛 − 2)                               (3.26) 
Completion times 

  Let us call an epidemic complete when all the available susceptibles have 

been exhausted. Now 𝑃0(𝜏) is the probability that the epidemic is complete at 

time 𝜏. Since the number of susceptibles is a noon – increasing function. 𝑃0(𝜏) 
is also the change that the epidemic has been completed in the interval from 0 to 𝜏. 
 Thus  𝑃0(𝜏) is the distribution function and 

𝑑𝑃0 𝑑𝜏  the frequency function for 

the completion time 𝜏. 
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 The moment generating function for the completion time is,                   𝑀𝑟(𝜃) = 𝐸𝑒−𝜃𝑟 

= ∫ 𝑑𝑃0 𝑑𝜏∞
0  𝑒𝜃𝑟  𝑑𝜏                           

= [𝑃0𝑒𝜃𝑟]0∞ − 𝜃∫ 𝑃0∞
0  𝑒𝜃𝑟 𝑑𝜏    

                                       = −𝜃𝑞0(−𝜃)  for 𝜃 < 0 

 Since 𝑃0(0) = 0, 𝑃0(∞) = 1 

 Therefore  𝑀𝜏(𝜃) = −𝜃𝑞0(−𝜃)                     (3.29) 

Substitute for 𝑞0 in (3.4) then,                                      𝑀𝜏(𝜃)
= (𝑛!)2∏ {−𝜃 + 𝑗(𝑛 − 𝑗 + 1)}𝑛𝑗=1                                                   

                =∏{1 − 𝜃𝑗(𝑛 − 𝑗 + 1)}−1𝑛
𝑗=1                                      (3.30) 

The cumulate – generating function is then given by, 

         𝐾𝜏(𝜃) = −∑𝑙𝑜𝑔 {1 − 𝜃𝑗(𝑛 − 𝑗 + 1)}𝑛
𝑗=1                             (3.31) 

The rth cummulant is evidently, 

𝐾𝑟 = (𝑟 − 1)!∑ 1𝑗𝑟(𝑛 − 𝑗 + 1)𝑟𝑛
𝑗=1                                 (3.32) 
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 Each term on the right – hand side of (3.32) can be expanded in a series 

of partial fractions. 

𝐾𝑟 = 2(𝑟 − 1)!∑𝑎𝑝𝑠𝑝                                                          𝑟
𝑝=1  𝑤ℎ𝑒𝑟𝑒 𝑎𝑝 = 𝑟 (𝑟 + 1)……(2𝑟 − 𝑝 + 1)/(𝑟 − 𝑝)! (𝑛 + 1)2𝑟−𝑝 (𝑝 < 𝑟)𝑎𝑟 = 1(𝑛 + 1)𝑟                                                                             

𝑎𝑛𝑑 𝑠𝑝 = ∑ 1𝑢𝑝𝑛
𝑢=1                                                                                         }   

  
    
 
    (3.33) 

 The first four cumulants are, 

 𝐾1 = 2𝑛+1  𝑆1                                                                          
𝐾2 = 4(𝑛+1)3  𝑆1 + 2(𝑛+1)2  𝑆2                                                𝐾3 = 24(𝑛+1)5  𝑆1 + 12(𝑛+1)4  𝑆2 + 4(𝑛+1)3  𝑆3                        𝐾4 = 240(𝑛+1)7  𝑆1 + 120(𝑛+1)6  𝑆2 + 48(𝑛+1)5  𝑆3 + 12(𝑛+1)4  𝑆4 }   

  
                          (3.34) 

Then,  

 𝑆1(𝑛) = 𝜓(𝑛 + 1) − 𝜓(1)                                                       𝑆𝑝(𝑛) = (−1)𝑝−1(𝑝 − 1)! {𝜓(𝑝−1)(𝑛 + 1) − 𝜓(𝑝−1)(1)}   (𝑝 > 1)}                    (3.35) 
  

 The asymptotic formula by using the well – known expansions 
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               𝑆1(𝑛)~𝑙𝑜𝑔 𝑛 + 𝛾 + 12𝑛 − 𝐵22  1𝑛2 − 𝐵44  1𝑛4………… 

𝑆𝑝(𝑛) ~ {𝜉(𝑝) − 1(𝑝 − 1)𝑛𝑝−1} + 1𝑛𝑝 {12 − 𝐵22 (𝑝1) 1𝑛 − 𝐵44 (𝑝 + 23 ) 1𝑛3……… . } 

(3.36) 

 It is evident from (3.34) , (3.35) and (3.36) that for large 𝑛 

𝐾1 = 2(𝑛 + 1) {log 𝑛 + 𝛾 + 𝑂(𝑛−1)}                   𝐾𝑟 = 2 (𝑟 − 1)!(𝑛 + 1)𝑟 𝜁(𝑟)  {1 + 𝑂(𝑛−1)} (𝑟 > 1) } 
                     (3.37) 

 Thus the co – efficient of variation is asymptotically equal to  

   𝜋 2⁄  √3 log𝑛             (3.38) 
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CHAPTER IV 

THE TOTAL SIZE OF A GENERAL STOCHASTIC EPIDEMIC 

 Stochastic models have a special importance in this context due to the 

fact that for epidemic processes stochastic means are not the same as the 

corresponding deterministic values. Although for large homogeneously mixing 

groups deterministic methods might be fairly adequate, it seems likely that in 

practice epidemics actually occur in several relatively small groups of friends 

and acquaintances, the epidemiological returns for an administrative unit being 

compounded of many such comparatively distinct processes. 

Deterministic treatment 

 Let us consider a homogeneously mixing community of 𝑛 individuals, of 

whom at time 𝑡 there are 𝑥 susceptibles, 𝑦 infectious cases in circulation and 𝑧 

individuals who are isolated, dead, or recovered and immune. 𝑥 + 𝑦 + 𝑧 = 𝑛. 

 Now suppose that there is a constant infection rate 𝛽  and a constant 

removal rate 𝛾, so that the number of new infections in time 𝑑𝑡 is 𝛽𝑥𝑦𝑑𝑡 and 

the number of removals from circulation is 𝛾𝑦𝑑𝑡. Let us choose our time scale 

so that 𝑡 is replaced by 𝛽𝑡. Then it is easy to see that the course of the epidemic 

is represented by the differential equations 
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   𝑑𝑥𝑑𝑡 = −𝑥𝑦,         𝑑𝑦𝑑𝑡 = 𝑥𝑦 − 𝜌𝑦,𝑑𝑧𝑑𝑡 = 𝜌𝑦, }  
                                                                        (4.1) 

where 𝜌 = 𝛾/𝛽 , the ratio of the removal to infection rate. Initially, when      𝑡 =  0, let us assume that 𝑥 is approximately equal to 𝑛. It is then clear from 

(4.1) that unless 𝜌 <  𝑛  no epidemic can start to build up as this requires                        [𝑑𝑦/𝑑𝑡]𝑡=0 > 0. 

 If 𝜌 = 𝑛 − 𝑣 where v is small compared with 𝑛 an epidemic of total size 2𝑣 will occur. If the initial density of susceptibles is 𝑛 = 𝜌 + 𝑣  then the 

introduction of a few infected persons will give rise to an epidemic after which 

the density of susceptibles is reduced of 𝜌 − 𝑣  a value as for below the 

threshold 𝜌 as originally it was above it. 

Stochastic treatment: 

 The assumption of homogeneous mixing of the susceptibles and 

infectious individuals in circulation the probability of one new infection taking 

place in time 𝑑𝑡 is 𝑥𝑦𝑑𝑡, while the probability of one infected person being 

removed from circulation in time 𝑑𝑡 is 𝜌𝑦𝑑𝑡.  
 Let 𝑝𝑟𝑠(𝑡) be the probability that at time 𝑡 there are 𝑟 susceptibles still 

uninfected and 𝑠 infectious individuals in circulation.  

 The partial differential equation for the probability generating function II 

: 
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𝜕Π𝜕𝑡 = (𝑣2 − 𝑢𝑣) 𝜕2Π𝜕𝑢𝜕𝑣 + 𝜌(1 − 𝑣)𝜕Π𝜕𝑣                                             (4.2) 
where Π =∑𝑢𝑟𝑣𝑠𝑝𝑟𝑠,𝑟,𝑠                                                                              (4.3) 
with limits 0 ≤ 𝑟 + 𝑠 ≤ 𝑛 + 𝑎,      0 ≤ 𝑟 ≤ 𝑛,           0 ≤ 𝑠 ≤ 𝑛 + 𝑎                  

 Let us now use the Laplace transform and its inverse with respect to time 

given by 

𝜙∗(𝜆) = ∫ 𝑒−𝜆𝑡𝜙(𝑡)𝑑𝑡,∞
0                𝑅(𝜆) > 0,

𝜙(𝑡) = 12𝜋𝑖∫ 𝑒𝜆𝑡𝜙∗(𝜆)𝑑𝜆,𝑐+𝑖∞
𝑐−𝑖∞ }  

                            (4.4) 
 Taking transforms of (4.2) and (4.3),and using the boundary condition 

                         𝑝𝑛𝑎(0) = 1,              (4.5) 

Let us  obtain 

(𝑣2 − 𝑢𝑣) 𝜕2Π∗𝜕𝑢𝜕𝑣 + 𝜌(1 − 𝑣)𝜕Π∗𝜕𝑣 − 𝜆Π∗ + 𝑢𝑛𝑣𝑎 = 0,                      (4.6) 
and Π∗ =∑𝑢𝑟𝑣𝑠𝑝𝑟𝑠∗𝑟,𝑠 =∑𝑢𝑟𝑣𝑠𝑞𝑟𝑠,𝑟,𝑠                                                         (4.7) 
where 

𝑞𝑟𝑠 = 𝑝𝑟𝑠∗ = ∫ 𝑒−𝜆𝑡𝑝𝑟𝑠(𝑡)𝑑𝑡∞
0                                                             (4.8) 

Substituting (4.7) in (4.6), and equating coefficients of 𝑢𝑟𝑣𝑠, yields the 

recurrence relations 
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(𝑟 + 1)(𝑠 − 1)𝑞𝑟+1,𝑠−1 − {𝑠(𝑟 + 𝜌) + 𝜆}𝑞𝑟𝑠 + 𝜌(𝑠 + 1)𝑞𝑟𝑠 = 0𝑎𝑛𝑑                                                                 −{𝑎(𝑛 + 𝜌) + 𝜆}𝑞𝑛𝑎 + 1 = 0,𝑤𝑖𝑡ℎ 0 ≤ 𝑟 + 𝑠 ≤ 𝑛 + 𝑎,   0 ≤ 𝑟 ≤ 𝑛,      0 ≤ 𝑠 ≤ 𝑛 + 𝑎. }    (4.9) 
 Any 𝑞𝑟𝑠whose suffix falls outside the prescribed ranges is taken to be 

identically zero. Using the inverse of the Laplace transformation then arrive at 

the required 𝑝𝑟𝑠 exhibiting them as sums of exponential terms like 𝑒−𝑖(𝑗+𝜌)𝑡. 
 Now the epidemic ceases to spread to fresh susceptibles as soon as 𝑠 = 0. 

Thus the probability of an epidemic of total size 𝜔 is 𝑃𝑤 = lim𝑡→∞𝑝𝑛−𝑤,0(𝑡)            (0 ≤ 𝑤 ≤ 𝑛),                                             = lim𝜆→0 𝜆𝑞𝑛−𝑤,0                                            = lim𝜆→0 𝜌𝑞𝑛−𝑤,1,          𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑟 = 𝑛 − 𝑤 𝑎𝑛𝑑 𝑠 = 0              (4.10) 

            = 𝜌𝑓𝑛−𝑤,1,                         (4.11) 

where 𝑓𝑟𝑠 = lim𝜆→0 𝑞𝑟𝑠,𝑓𝑜𝑟 1 ≤ 𝑟 + 𝑠 ≤ 𝑛 + 𝑎,   0 ≤ 𝑟 ≤ 𝑛,           0 ≤ 𝑠 ≤ 𝑛 + 𝑎}                  (4.12) 

 The quantities  𝑓𝑟𝑠  evidently satisfy the following recurrence relations 

obtained from (4.9) by writing 𝑓𝑟𝑠 for 𝑞𝑟𝑠 and putting 𝜆 = 0, (𝑟 + 1)(𝑠 − 1)𝑓𝑟+1,𝑠−1 − 𝑠(𝑟 + 𝜌)𝑓𝑟𝑠 + 𝜌(𝑠 + 1)𝑓𝑟,𝑠+1 = 0𝑎𝑛𝑑                                                                     −𝑎(𝑛 + 𝜌)𝑓𝑛𝑎 + 1 = 0,}  (4.13) 
𝑓𝑟𝑠 = 𝑛! (𝑟 + 𝜌 − 1)! 𝜌𝑛+𝑎−𝑟−𝑠𝑠𝑟! (𝑛 + 𝜌)!  𝑔𝑟𝑠                                                             (4.14) 
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Substituting in (4.13) gives 𝑔𝑟+1,𝑠−1 − 𝑔𝑟𝑠 + (𝑟 + 𝜌)−1𝑔𝑟,𝑠+1 = 0𝑔𝑛𝑎 = 1                   }                                                          (4.15) 
 Thus the progress of the epidemic can be regarded as a random walk from 

the point (𝑛, 𝑎) to the points (𝑛 − 𝑤, 0), 𝑤 = 0,1,……… , 𝑛 with an absorbing 

barrier at 𝑟 = 0  and where the possible transitions from (𝑟, 𝑠)  are                       (𝑟, 𝑠) → (𝑟 − 1, 𝑠 + 1) , occurring with probability 𝑟/(𝑟 + 𝜌)  and                   (𝑟, 𝑠) → (𝑟, 𝑠 − 1), occurring with probability 𝜌/(𝑟 + 𝜌) 
 Thus,  

𝑃𝑤 = 𝜌𝑎+𝑤𝜌 + 𝑛 − 𝑤 (𝑛𝑤)(𝑛 + 𝜌𝑤 ) ∑(𝜌 + 𝑛)−𝛼0  (𝜌 + 𝑛 − 1)−𝛼1𝛼 ……(𝜌 + 𝑛 − 𝑤)−𝛼𝑤 

(4.16) 

where the summation is over all compositions of 𝑎 + 𝑤 − 1 into 𝑤 + 1 parts 

such that 0 ≤ 𝛼𝑖 ≤ 𝑎 + 𝑖 − 1 for 0 ≤ 𝑖 ≤ 𝑤 − 1 and 1 ≤ 𝛼𝑤 ≤ 𝑎 + 𝑤 − 1. The 

purposes of computation there appears to be some advantage especially if 𝑛 is at 

all large in calculating the quantities 𝑝𝑤 from (4.11), (4.14), and (4.15) instead 

of from (4.16). The relative removal rate 𝜌 is large epidemic tend to be small 

and conversely, 
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Household distribution of cases: 

 The first case in a family would arise from an outside contact while 

subsequent cases would occur through contacts within the family. The 

frequencies of the final number of cases observed can then be found in terms of 

a parameter 𝑝 such a model is quite adequate for measles and satisfactory tests 

of goodness – of – fit were obtained for the data available, merely by equating 

observed and expected means. Equation (4.11), (4.14) and (4.15) can be used as 

before to calculate the quantities 𝑝𝑤 for small values of 𝑛. 

 In partially solving the recurrence relation  to give 𝑔𝑟𝑠 as a linear function 

of 𝑔𝑟+1,𝑖   𝑖 = (𝑠 − 1),…… . (𝑛 − 𝑟). The requisite formula are easily found to 

be, 

𝑔𝑟𝑠 = ∑ (𝑟 + 𝜌)𝑠−𝑖−1 𝑔𝑟+1,𝑖     (𝑠 > 1)𝑛−𝑟
𝑖=𝑠−1𝑤𝑖𝑡ℎ 𝑔𝑟1 = 𝑔𝑟2(𝑟 + 𝜌)                                       𝑔𝑛1 = 1                                                           }  

                                            (4.17) 
𝑛 = 1: 
 𝑝0 = 𝜌/(𝜌 + 1)     𝜌̂ = 𝑎0/𝑎1         𝐼𝜌 = 𝑁/𝜌(𝜌 + 1)2 

          𝑝1 = 1/(𝜌 + 1) 
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𝑛 = 2: 
 𝑝0 = 𝜌/(𝜌 + 2)     
          𝑝1 = 2𝜌2/(𝜌 + 2)(𝜌 + 1)2 

          𝑝2 = 2(2𝜌 + 1)/(𝜌 + 2)(𝜌 + 1)2 

            𝑑𝐿𝑑𝑝 = 𝑎0 + 𝑎1𝜌 + 2𝑎22𝜌 + 1 − 2(𝑎1 + 𝑎2)𝜌 + 1 − 𝑁𝜌 + 2 

𝑛 = 3: 
 𝑝0 = 𝜌/(𝜌 + 3)     
          𝑝1 = 3𝜌2/(𝜌 + 3)(𝜌 + 2)2 

          𝑝2 = 6𝜌3(2𝜌 + 3)/(𝜌 + 3)(𝜌 + 2)2(𝜌 + 1)3 

          𝑝3 = 6(5𝜌3 + 12𝜌2 + 8𝜌 + 2)/(𝜌 + 3)(𝜌 + 2)2(𝜌 + 1)3 

            𝑑𝐿𝑑𝑝 = 𝑎0 + 2𝑎1 + 3𝑎2𝜌 + 2𝑎22𝜌 + 3 + (15𝜌2 + 24𝜌 + 8 )𝑎35𝜌3 + 12𝜌2 + 8𝜌 + 2 

                                                                − 3(𝑎2 + 𝑎3)𝜌 + 1 − 2(𝑎1 + 𝑎2 − 𝑎3)𝜌 + 2 − 𝑁𝜌 + 3 

𝑛 = 4: 
 𝑝0 = 𝜌/(𝜌 + 4)     
          𝑝1 = 4𝜌2/(𝜌 + 4)(𝜌 + 3)2 
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          𝑝2 = 12𝜌3(2𝜌 + 5)/(𝜌 + 4)(𝜌 + 3)2(𝜌 + 2)3 

          𝑝3 = 24𝜌4(5𝜌3 + 27𝜌2 + 47𝜌 + 27)/(𝜌 + 4)(𝜌 + 3)2(𝜌 + 2)3(𝜌 + 1)4 
          𝑝4 = 24(14𝜌6 + 93𝜌5 + 235𝜌4 + 293𝜌3 + 197𝜌2 + 74𝜌 + 12)/(𝜌 + 4) 
                (𝜌 + 3)2(𝜌 + 2)3(𝜌 + 1)4 
            𝑑𝐿𝑑𝑝 = 𝑎0 + 2𝑎1 + 3𝑎2 + 4𝑎3𝜌 + 2𝑎22𝜌 + 5 + (15𝜌2 + 54𝜌 + 47 )𝑎35𝜌3 + 12𝜌2 + 47𝜌 + 27 

                        + (84𝜌5 + 465𝜌4 + 940𝜌3 + 879𝜌2 + 394𝜌 + 74)𝑎414𝜌6 + 93𝜌5 + 235𝜌4 + 293𝜌3 + 197𝜌2 + 74𝜌 + 12 

                         − 4(𝑎3 + 𝑎4)𝜌 + 1   − 3(𝑎2 + 𝑎3 + 𝑎4)𝜌 + 2 − 2(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4)𝜌 + 3
− 𝑁𝜌 + 4 

𝑛 = 5: 
        𝑝0 = 𝜌/(𝜌 + 5)     
         𝑝1 = 5𝜌2/(𝜌 + 5)(𝜌 + 4)2 

         𝑝2 = 20𝜌3(2𝜌 + 7)/(𝜌 + 5)(𝜌 + 4)2(𝜌 + 3)3 

         𝑝3 = 60𝜌4(5𝜌3 + 42𝜌2 + 116𝜌 + 106)/(𝜌 + 5)(𝜌 + 4)2(𝜌 + 3)3(𝜌 + 2)4 

𝑝4 = 120𝜌5(14𝜌6 + 177𝜌5 + 910𝜌4 + 2443𝜌3 + 3626𝜌2 + 2836𝜌 + 918)(𝜌 + 5)(𝜌 + 4)2(𝜌 + 3)3(𝜌 + 2)4(𝜌 + 1)5  
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    𝑑𝐿𝑑𝑝 = 𝑎0 + 2𝑎1 + 3𝑎2 + 4𝑎3 + 5𝑎4𝜌 + 2𝑎22𝜌 + 7 + (15𝜌2 + 84𝜌 + 116 )𝑎35𝜌3 + 42𝜌2 + 116𝜌 + 106 

                        + (84𝜌5 + 885𝜌4 + 3640𝜌3 + 7329𝜌2 + 7252𝜌 + 2836)𝑎414𝜌6 + 177𝜌5 + 910𝜌4 + 2443𝜌3 + 3626𝜌2 + 2836𝜌 + 918 

                        + (420𝜌9 + 5364𝜌8 + 28832𝜌7 + 85680𝜌6 + 155646𝜌5+180720𝜌4 + 136244𝜌3 + 65856𝜌2 + 18912𝜌 + 2448) 𝑎514𝜌6 + 177𝜌5 + 910𝜌4 + 2443𝜌3 + 3626𝜌2 + 2836𝜌 + 918 

                         − 5(𝑎4 + 𝑎5)𝜌 + 1   − 4(𝑎3 + 𝑎4 + 𝑎5)𝜌 + 2 − 3(𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)𝜌 + 3  

                         − 2(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)𝜌 + 4 − 𝑁𝜌 + 5 

 The values of 𝑛 as small as 1 to 5,it is probably just derive the 𝑝𝑤 straight 

from Foster’s formula (4.16). 
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CHAPTER V 

THE OUTCOME OF STOCHASTIC EPIDEMICS 

Introduction 

 Bailey has considered a Stochastic Epidemic model of the type set up by 

Barlett and shows that the probability distribution function {𝑃𝑛} of the ultimate 

number of infected individuals is calculated by solving a set of doubly recurrent  

relation . These same probabilities are obtained by the solution of a set of singly 

recurrent relations  by Whittle in this chapter [39]. 

 The growth of a stochastic epidemic in a closed population is a very 

challenging one. A temporally homogeneous Markov process having a finite 

number of states and yet there is great difficult in finding out anything useful 

about the sample “epidemic curve”. 

 Let 𝐵𝑠∆𝑡 be the probability that an infectious individual is removed in the 

infinitesimal time interval (𝑡, 𝑡 + ∆𝑡)  and let 𝐴𝑟𝑠∆𝑡  be the corresponding 

probability that a new infection takes place. No particular form is assumed for 

the function 𝐴𝑟 at the moment. 

 The development of the probabilities 𝑝𝑟𝑠 is then governed by the relations 

𝜕𝜕𝑡 𝑝𝑟𝑠 = 𝐴𝑟+1(𝑠 − 1)𝑝𝑟+1,𝑠−1 + 𝐵(𝑠 + 1)𝑝𝑟,𝑠+1 − (𝐴𝑟𝑠 − 𝐵𝑠)𝑝𝑟𝑠     (5.1) 
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(𝜆 + 𝐴𝑟𝑠 + 𝐵𝑠)𝑞𝑟𝑠 = 𝐴𝑟+1(𝑠 − 1)𝑞𝑟+1,𝑠−1 + 𝐵(𝑠 + 1)𝑞𝑟,𝑠+1 + 𝛿𝑛,𝑟𝛿            

(5.2) 

If the transformation, 

𝑞𝑟𝑠 = ∫ 𝑒−𝜆𝑡∞
0  𝑝𝑟𝑠(𝑡)𝑑𝑡                                                        (5.3) 

is performed. As Bailey observes, the probability of an epidemic of total size 𝑤 

is then 

         𝑃𝑤 = 𝐵𝑓𝑛−𝑤,1          (5.4) 

         𝑓𝑟𝑠 = lim𝜆→0 𝑞𝑟𝑠         (5.5) 

Establishment of the recurrence relations 

 ℎ𝑟0 = 0       ℎ𝑟𝑠 = 𝑠𝑓𝑟𝑠      (𝑠 = 1,2,…… . . )       (5.6) 

𝛼𝑟 = 𝐵𝐴𝑟 + 𝐵                                                 (5.7) 
𝛽𝑟 = 𝐴𝑟+1𝐴𝑟 + 𝐵                                                                        (5.8) 

Then the equation for the 𝑓𝑟𝑠 take the form  

    ℎ𝑟𝑠 = 𝛼𝑟ℎ𝑟,𝑠+1 + 𝛽𝑟ℎ𝑟+1,𝑠−1                     (5.9) 

ℎ𝑛𝑠 = 𝛼𝑛ℎ𝑛,𝑠+1 + 𝛽𝑛 ( 𝛿𝑎𝑠𝐴𝑛+1)    (𝑟 = 𝑛 − 1, 𝑛 − 2,…… . , 𝑠 = 1,2, )  (5.10) 
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          𝐿𝑒𝑡 𝐻𝑟(𝑥) = ∑ ℎ𝑟𝑠 𝛼𝑠+1∞𝑠=1  

𝐻𝑟(𝑥) = 𝑥2𝑥 − 𝛼𝑟  [𝛽𝑟𝐻𝑟+1(𝑥) − 𝛼𝑟ℎ𝑟1]                                                    (5.11) 
The direct solution (5.9) show that 

ℎ𝑟1 = 𝛽𝑟𝛼𝑟  𝐻𝑟+1(𝛼𝑟)                                                                                 (5.12) 
as indeed it must if the expression (5.11) for 𝐻𝑟 is to constitute a finite series in 𝑥. 

𝐻𝑟(𝑥) = 𝛽𝑟𝑥2𝑥 − 𝛼𝑟  [𝐻𝑟+1(𝑥) − 𝐻𝑟+1(𝛼𝑟)]                                              (5.13) 
A relation with certainly holds for 𝑟 = 𝑛 − 1, 𝑛 − 2,……. and also for 𝑟 = 𝑛 if 

introduce a function. 

   𝐻𝑛+1(𝑥) = 𝑥𝑎𝐴𝑛+1                                                                                         (5.14) 
𝑃𝑤 = 𝐵 𝛽𝑛−𝑤𝛼𝑛−𝑤  𝐻𝑛−𝑤+1 [𝛼𝑛 −𝑤]                                                (5.15) 

 The equation (5.13) and (5.14) 𝐻𝑛−𝑤+1(𝑥) can be expressed in terms of 𝐻𝑛−𝑤+2(𝛼𝑛−𝑤+1), … . . 𝐻𝑛(𝛼𝑛−1),𝐻𝑛+1(𝑥) . 𝑥 = 𝛼𝑛−𝑤  in this expression and 

substituting for the 𝐻𝑟+1(𝛼𝑟) from (5.15) 
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∑𝐾𝑛−𝑢+1,𝑛−𝑢 , 𝐾𝑛−𝑢+2,𝑛−𝑢, ……………… .𝑢
𝑤=0 𝐾𝑛−𝑤,𝑛−𝑢  𝛼𝑛−𝑤𝛽𝑛−𝑤  𝑝𝑤 

= 𝐾𝑛−𝑢+1,𝑛−𝑢 , 𝐾𝑛−𝑢+2,𝑛−𝑢 , ……………… .𝐾𝑛,𝑛−𝑢  ( 𝐵𝐴𝑛+1) 𝛼𝑛−𝑢𝛼   (5.16) 
where 𝐾𝑟𝑟 = 1,𝐾𝑟𝑠 = 𝛼𝑠 2  𝛽𝑟𝛼𝑠−𝛼𝑟    (𝑟 ≠ 𝑠)                              (5.17) 

for 𝑢 = 𝑛 reduces to 

∑𝑃𝑤𝑛
0 = 1                                                                                              (5.18) 

complications arise if any of the 𝐴𝑟′𝑠 are equal. When this happens 𝑃𝑤 involves 

not only 𝐻𝑛+1(𝑥) but also its derivatives. In this direction is that for which 𝐴𝑟 is 

constant for 𝑟 > 0. 

𝐴𝑟 = 𝐴  (𝑟 = 1,2,………)𝐴0 = 0                                  }                                                         (5.19) 
 The appropriate modification of (5.17) may be derived by a repeated 

application of  de L’Hospital rule and may be shown by induction to have a 

solution, 

𝑃𝑤 = 𝐴𝑤 𝐵𝛼+𝑤(𝐴 + 𝐵)𝛼+2𝑤   𝑎(𝑎 + 2𝑤 − 1)!𝑤! (𝑎 + 𝑤)!𝑃𝑛 = 1 −∑𝑃𝑤𝑛−1
0                                     }  

                                              (5.20) 



67 

 

                     𝐴𝑟 = 𝐶𝑟                  (5.21) 

where C is constant, 

𝛼𝑟 = 𝐵𝐵 + 𝐶𝑟   ,         𝛽𝑟 = 𝐶(𝑟 + 1)𝐵 + 𝐶𝑟
𝐾𝑟𝑠 = 𝐵(𝑟 + 1)(𝐵 + 𝐶𝑠)(𝑟 − 𝑠) = 𝛼𝑠(𝑟 + 1)𝑟 − 𝑠 }  

                                               (5.22) 
∑(𝑛 −𝑤𝑛 − 𝑢)𝛼𝑛−𝑢−𝑤𝑢
𝑤=0  𝑃𝑤 = (𝑛𝑢) 𝛼𝑛−𝑢𝛼  (𝑢 = 0,1,2,…… . , 𝑛)          (5.23) 

 For computational purposes it is convenient to consider instead of 𝑃𝑤 the 

quantity. 

   𝑄𝑤 = (𝑛 − 𝑤)!𝑛!  𝑃𝑤                                                                             (5.24) 
∑ 𝛼𝑛−𝑢−𝑤  𝑄𝑤(𝑢 − 𝑤)!𝑛
𝑤=0 = 𝛼𝑛−𝑢𝛼𝑢!                                                                                            (5.25) 

The Probability of Epidemic 

 A comparison formula for establishing behaviour of more refined models. 

The model upon which it is based is a perfectly valid one which for quite large 

ranges of 𝑤  is more realistic then that corresponding to assumption (5.22). 

Since this assumption requires that the population mix homogeneously. 
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  The case 𝑎 = 2, 𝑛 = 30, 𝜌 = 𝐵 𝐶⁄ = 30𝐵 𝐴⁄ = 10 

 𝑤 0 1 2 3 

 𝑃𝑤 

𝐴𝑟 = 3 0.0625 0.0235 0.0110 0.0058 𝐴𝑟 = 0.1𝑟 0.0625 0.0251 0.0122 0.0078 

 

 An epidemic has taken place if the total proportion of susceptibles which 

become infected exceeds a predetermined fraction 𝛾. With this definition the 

probability of no epidemic is 

𝜋𝛾 = ∑ 𝑃𝑤𝑛𝛾
𝑤=0                                                                              (5.26) 

 Assume that in all three cases the infection intensity is non – decreasing 

with increasing 

    

𝐴𝑟+1 ⋝ 𝐴𝑟𝐴𝑟+1′ ⋝ 𝐴𝑟′𝐴𝑟+1′′ ⋝ 𝐴𝑟′′}   (𝑟 = 0,1,2, ……… . , )             (5.27) 

 The range 𝑛 ⋝ 𝑟 ⋝ 𝑛(1 − 𝛾)  the intensity for the first model lies 

uniformly between those for the other two  

   𝐴𝑟′ ⋝ 𝐴𝑟 ⋝ 𝐴𝑟′′                (5.28) 
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 It is then intuitively evident that 

∑𝑃𝑤′𝑛𝛾
0 ≤∑𝑃𝑤𝑛𝛾

0 ≤∑𝑃𝑤𝑛𝑛𝛾
0                                                               (5.29) 

 Suppose now that the intensities for those two comparison models have 

the constant values 

               
𝐴𝑟′ = 𝐴𝑛       𝐴𝑟′′ = 𝐴𝑛(1−𝛾)}   (𝑟 > 0)                               (5.30) 

𝐴0′ = 𝐴0′′ = 0  condition (5.29) is thus fulfilled and the inequality (5.30) 

becomes 

∑𝑆𝑤(𝐴𝑛)𝑛𝛾
0 ⋜ 𝜋𝑟 ⋜∑𝑆𝑤(𝐴𝑛(1−𝛾))𝑛𝛾

0                                                          (5.31) 
Consider now that partial sum ∑ 𝑆𝑤(𝐴)𝑛𝛾0  as 𝑛 becomes large 

𝑆𝑤+1𝑆𝑤 = 𝐴𝐵(𝐴 + 𝐵)2  (𝑎 + 2𝑤 + 1) (𝑎 + 2𝑤)(𝑤 + 1) (𝑎 + 𝑤 + 1) < 5𝐴𝐵(𝐴 + 𝐵)2  
𝐼𝑓 𝑤 > (𝑎 + 1)(𝑎 − 5)6                                                                      (5.32) 

 The quantity 5𝑘  will be less than unity except for the case 𝐴 = 𝐵 . It 

exclude for the moment 

∑𝑆𝑤(𝐴)𝑛𝛾
0 =∑𝑆𝑤(𝐴)∞

0 − 𝑅𝑛𝛾(𝐴)                                                          (5.33) 
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where, 

𝑅𝑛𝛾(𝐴) = ∑ 𝑆𝑤(𝐴) < 𝑆𝑛𝛾+1(𝐴)∞
𝑛𝛾+1 [1 + (5𝑘) + (5𝑘)2+. . …… ] = 𝑂[(5𝑘)𝑛𝛾]  

(5.34) 

  ∑𝑆𝑤(𝐴)∞
0 = [1 − √(1 − 5𝑘)2𝑘 ]𝑎 ( 𝐵𝐴 + 𝐵)𝑎 

= [𝐴 + 𝐵 − [|𝐴 − 𝐵|]2𝐴 ]𝑎                                                                    (5.35) 
Combining (5.32), (5.34), (5.35) and (5.36) 

[𝐴𝑛 + 𝐵 − [|𝐴𝑛 − 𝐵|]2𝐴𝑛 ]𝑎 + 𝑂[(5𝑘)𝑛𝛾]  ⋜ 𝜋𝛾 

⋜ [𝐴𝑛(1−𝛾) + 𝐵 − [|𝐴𝑛(1−𝛾) − 𝐵|]2𝐴𝑛(1−𝛾) ]𝑎                                     (5.36) 
𝐴𝑛 > 𝐵, 𝐴𝑛(1−𝛾) > 𝐵; (𝐵/𝐴𝑛)𝑎 ⋜ 𝜋𝛾 ⋜ (𝐵/𝐴𝑛(1−𝛾))𝑎𝐴𝑛 > 𝐵,𝐴𝑛(1−𝛾) < 𝐵; (𝐵/𝐴𝑛)𝑎 ⋜ 𝜋𝛾 ⋜ 1                       𝐴𝑛 < 𝐵, 𝐴𝑛(1−𝛾) < 𝐵; 𝜋𝛾 = 1                                               } 

                        (5.37) 
𝜌𝑛 = 𝐵/𝐶 = 𝑛𝐵/𝐴𝑛                                                                                 (5.38) 
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The ratio of removal and infection rates for a population of size 𝑛:

 𝐹𝑜𝑟 𝜌𝑛 < 𝑛 𝑎𝑛𝑑 𝜌𝑛(1−𝛾) < 𝑛(1 − 𝛾), 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛1 − (𝜌𝑛𝑛 )𝑎  𝑎𝑛𝑑 1 − (𝜌𝑛(1−𝛾)𝑛(1−𝛾))𝑎 𝐹𝑜𝑟 𝜌𝑛 < 𝑛 𝑎𝑛𝑑 𝜌𝑛(1−𝛾) > 𝑛(1 − 𝛾), 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑧𝑒𝑟𝑜 𝑎𝑛𝑑 1 − (𝜌𝑛𝑛 )𝑎𝐹𝑜𝑟 𝜌𝑛 > 𝑛 𝑎𝑛𝑑 𝜌𝑛(1−𝛾) > 𝑛(1 − 𝛾), 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑖𝑠 𝑧𝑒𝑟𝑜             }  
  
  

  

(5.39) 

 Since for large 𝑛 the ratio 𝜌𝑛 𝑛⁄ = 𝐵 𝐴𝑛⁄  will tend to an almost constant 

value statement (5.50) roughly condensed to, 

𝐹𝑜𝑟 𝜌𝑛 < 𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑖𝑠 1 − (𝜌𝑛 𝑛⁄ )𝑞𝐹𝑜𝑟 𝜌𝑛 > 𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑖𝑠 𝑧𝑒𝑟𝑜              }        (5.40) 
The probability completion is of fairly constant magnitude for small 𝑤, roughly 

of order (1 2⁄ )𝑎. As the number of susceptibles diminish, however the critical 

value of 𝜌 with full and it seems likely that the epidemic will eventually be 

halted although only after having made appreciable inroads on the population. 

 The probability distribution 𝑃𝑤  of (5.25) presents two different forms 

according as 𝐴 is less than or greater than 𝐵. In both cases 𝑃𝑤  dwindles with 

increasing 𝑤 and if the population size is large enough to permit 𝑤 to take large 

value 𝑃𝑤 will finally approach zero. In the case 𝐴 < 𝐵 the sum of the 𝑃𝑤 up to 

this stage will approach unity. 
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 In this case 𝐴 > 𝐵 this sum will have some value less than unity (1 − 𝛼). 
So that 𝑃𝑛 must have a finite value 𝛼 if relation is to be fulfilled. 

 For large 𝑛 the probability of no epidemic 

𝜋𝛾 =∑𝑆𝑤(𝐴)𝑛𝛾
0                                                                              (5.41) 

will be equal to the area under the initial part of the curve: Unity if 𝐴 < 𝐵, 𝛼 if 𝐴 > 𝐵. 

 The fact that all probability mass which does not fall in the first                     

J – shaped part of the curve falls at 𝑤 = 𝑛 indicates that either the epidemic 

keeps with in bounds or else it infects the entire population. 

 Models with varying A show a similar, although less extreme behaviour. 

Thus the distribution curves calculated by Bailey are either J – shaped or                  

U – shaped, depending upon the relative value of the removal ratio and the 

population size. 

 The J – shaped curve corresponds to cases in which the infection is 

almost certainly confined to small proportion of the population and so              𝛽(𝑧)  =  𝛽  when 𝑧 =  0 and 𝛽 (𝑧)  <  𝛽 when 0 ≦ 𝑧 ≦ 𝜌. From this we infer 

that the K and K approximation consistently underestimates the infection-rate 

and so it will underestimate the total size 𝑧(∞) of the epidemic.  
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CHAPTER VI 

THE DISTRIBUTION OF THE TOTAL SIZE OF AN EPIDEMIC 

 The  distribution of the total number of cases in an epidemic of the 

general stochastic type for a closed population. The recurrence relation from 

which the required probabilities were computed numerically. This calculations 

reveled a gradual transition from j – shaped distribution containing only small 

epidemics for population size below the threshold to u – shaped distributions 

containing either large or small epidemics but practically no epidemics of 

intermediate size when the threshold is exceeded. There is also an transitional 

form of distribution near the threshold value. The main object is to arrive at 

approximate formula for the distribution of the total epidemic size with are 

appropriate for large population given by [8]. 

The Deterministic Model 

 Suppose that at time 𝑡  there are 𝑥  susceptibles, 𝑦  infectives and 𝑧 

recovered or dead in the population. 

  Initially take  𝑥 = 𝜉, 𝑦 = 𝜂, 𝑧 = 0, so that, 

𝑥 + 𝑦 + 𝑧 = 𝜉 + 𝜂 

 The deterministic equations are  

𝑑𝑥𝑑𝑡 = −𝑥𝑦, 𝑑𝑦𝑑𝑡 = 𝑥𝑦 − 𝜌𝑦, 𝑑𝑧𝑑𝑡 = 𝜌𝑦                    (6.1) 
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where 𝜌 is called relative rate. 

  Then 
𝑑𝑥𝑑𝑧 = − 𝑥𝜌  and 𝑥 = 𝜉 𝑒𝑥𝑝(−𝑧 𝜌⁄ )  for all 𝑡 . At the end of the 

epidemic 𝑦 = 0, 𝑧 = 𝜉 + 𝜂 − 𝑥  and the number 𝑥  of individual remaining 

uninfected satisfies the equation 

 𝑥 𝑒𝑥𝑝(−𝑥 𝜌⁄ ) = 𝜉 𝑒𝑥𝑝[− (𝜉 + 𝜂) 𝜌⁄ ]                                              (6.2) 
 Suppose that 𝜉 and 𝜌 large and 𝜂 𝜌⁄  is small. There are two values of 𝑥 

satisfying near the respective roots 𝜉, 𝜉′ 𝑜𝑓 𝑥 𝑒𝑥𝑝(−𝑥 𝜌⁄ ) = 𝜉 𝑒𝑥𝑝(−𝜉 𝜌⁄ ). A 

first approximation  

𝑥 = 𝜉 − 𝜂𝜉 (𝜌 − 𝜉)⁄                                                            (6.3) 
where 𝜉 > 𝜌the required root is near 𝜉′ < 𝜌 and approximately, 

𝑥 = 𝜉′ − 𝜂𝜉′ (𝜌 − 𝜉′)⁄                                                       (6.4) 
then 𝜉 ≫ 𝜌 and 𝜉′ 𝜌⁄  is small. 

𝑥~𝜉′~𝜉𝑒−𝜉 𝜌⁄                                                                     (6.5) 
The Stochastic Model 

 The transition in (𝑡, 𝑡 + 𝛿𝑡) are (𝑥, 𝑦) ⟶ (𝑥 − 1, 𝑦 + 1) with probability 𝑥𝑦 𝛿𝑡 + 𝑂(𝛿𝑡) and (𝑥, 𝑦) ⟶ (𝑥, 𝑦 − 1) with probability 𝜌𝑦 𝛿𝑡 + 𝑂(𝛿𝑡) 
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𝑃{(𝑥, 𝑦) ⟶ (𝑥 − 1, 𝑦 + 1)} = 𝑥 (𝜌 + 𝑥)⁄𝑃{(𝑥, 𝑦) ⟶ (𝑥, 𝑦 − 1)}          = 𝜌 (𝜌 + 𝑥)⁄ }                                      (6.6) 
where initially 𝑥 = 𝜉, 𝑦 = 𝜂  and absorption occur on 𝑦 = 0 . An alternative 

formulation of the random walk in terms of new cases 𝑤 = 𝜉 − 𝑥 and removals 𝑧 is some interest. 

𝑃{(𝑤, 𝑧) ⟶ (𝑤 + 1, 𝑧)} = (𝜉 − 𝑤) (𝜌 + 𝜉 − 𝑤)⁄𝑃{(𝑤, 𝑧) ⟶ (𝑤, 𝑧 + 1)} = 𝜌 (𝜌 + 𝜉 − 𝑤)⁄            }  
                                        (6.7) 

 The game stops when the player is ruined (𝑤 + 𝜂 = 𝑧) or when he has 

drawn all real pennies (𝑤 = 𝜉). 
 Let 𝑃(𝑥 𝜉, 𝜂⁄ )  be the probability that there are ultimately 𝑥  uninfected 

individuals. When initially there were 𝜉 susceptibles and 𝜂 infectives. 

𝜉 𝑃 (𝑥 𝜉 − 1, 𝜂 + 1⁄ ) + 𝜌 𝑃 (𝑥 𝜉, 𝜂 − 1⁄ ) − (𝜌 + 𝜉)𝑃 (𝑥 𝜉, 𝜂⁄ ) = 0           
    𝜉 > 𝑥, 𝜂 ≧ 1 and         

(6.8) 

𝜌𝑃 (𝑥 𝑥, 𝜂 − 1⁄ ) − (𝜌 + 𝑥)𝑃(𝑥 𝑥, 𝜂⁄ ) = 0                                          (6.9) 
with the condition 

𝑃 (𝑥 𝜉, 0⁄ ) = 𝛿(𝜉 − 𝑥)                                                              (6.10) 
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where 𝛿(𝜉 − 𝑥) = 0, 𝜉 ≠ 𝑥 and 𝛿(0) = 1. 

𝑃(𝑥 𝑥, 𝜂⁄ ) = [𝜌 (𝜌 + 𝑥)⁄ ]𝑃(𝑥 𝑥, 𝜂⁄ − 1) =.…………… = [𝜌 (𝜌 + 𝑥)⁄ ]𝜂   (6.11) 
( 𝜉𝑥 + 𝑠) ( 𝜌𝜌 + 𝑥 + 𝑠)𝜉−𝑥+𝜂                                    (6.12) 

𝑃 (𝑥 𝜉, 𝜂⁄ ) = ∑𝐴𝑠𝜉−𝑥
𝑠=0  ( 𝜉𝑥 + 𝑠) ( 𝜌𝜌 + 𝑥 + 𝑠)𝜉−𝑥+𝜂                                    (6.13) 

If 𝐴0 = 1, let us have  

𝛿(𝜉 − 𝑥) = ∑𝐴𝑠𝜉−𝑥
𝑠=0  ( 𝜉𝑥 + 𝑠) ( 𝜌𝜌 + 𝑥 + 𝑠)𝜉−𝑥+𝜂                                    (6.14) 

 The coefficient 𝐴𝑠  can be determined recursively and hence 𝑃(𝑥 𝜉, 𝜂⁄ ) 
can be found provided 𝐴𝑠 is independent of 𝜉 

𝐴𝑠 = (−)𝑠  (𝑥 + 𝑠𝑠 )𝐻𝑠                                                                (6.15) 
( 𝜉𝑥 + 𝑠) (𝑥 + 𝑠𝜉 ) = (𝜉𝑥) (𝜉 − 𝑥𝑠 )                                                                    (6.16) 

Then, 

𝑃 (𝑥 𝜉, 𝜂⁄ ) = (𝜉𝑥) ∑(−)𝑠 𝐻𝑠𝜉−𝑥
𝑠=0 (𝜉 − 𝑥𝑠 ) ( 𝜌𝜌 + 𝑥 + 𝑠)𝜉−𝑥+𝜂                    (6.17) 



 

77 

 

𝛿(𝜉 − 𝑥) =  ∑(−)𝑠 𝐻𝑠𝜉−𝑥
𝑠=0 (𝜉 − 𝑥𝑠 ) ( 𝜌𝜌 + 𝑥 + 𝑠)𝜉−𝑥                            (6.18) 

 Their coefficient 𝐻𝑠  dependent only on 𝑥 and 𝜌. Their value lies in the 

fact that a technique is available for obtaining an asymptotic approximation. 

When 𝜉 is large. 

Some Exact Results 

 Since the left side of (6.18) is zero except when 𝜉 = 𝑥, it can equally well 

be put in the form  

𝛿(𝜉 − 𝑥) =  ∑(−)𝑠 𝐻𝑠𝜉−𝑥
𝑠=0 (𝜉 − 𝑥𝑠 ) ( 𝜌𝜌 + 𝑥 + 𝑠)𝜉−𝑥                            (6.19) 

then 𝐻𝑠 = 𝐻𝑠(𝑥, 𝜌) and 𝑃(𝑥 𝜉, 𝜂⁄ ) = 𝑃(𝑥 𝜉, 𝜂⁄ , 𝜌) to show their dependence on 𝜌 it appears that. 

           𝐻𝑠 ≡ 𝐻𝑠(𝑥, 𝜌) and 𝑃(𝑥 𝜉, 𝜂⁄ ) = 𝑃(𝑥 𝜉, 𝜂⁄ , 𝜌) to show their dependence 

on 𝜌 it appears that. 

  𝐻𝑠(𝑥, 𝜌) = 𝐻𝑠(0, 𝜌 + 𝑥)                                (6.20) 

The exact relation, 

𝑃 (𝑥 𝜉, 𝜂⁄ , 𝜌) = ( 𝜌𝜌 + 𝑥 + 𝑠)𝜉−𝑥+𝜂 (𝜉𝑥)𝑃 (0 𝜉 − 𝑥⁄ , 𝜂, 𝜌 + 𝑥)             (6.21) 
 The equations are with 𝐻𝑠 for 𝐻𝑠(0, 𝜌) 
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𝑃 (0 𝜉, 𝜂⁄ , 𝜌) =∑(−)𝑠 𝐻𝑠𝜉
𝑠=0 (𝜉𝑠) ( 𝜌𝜌 + 𝑠)𝜉+𝜂                                          (6.22) 

𝛿(𝜉) =∑(−)𝑠 𝐻𝑠𝜉
𝑠=0 (𝜉𝑠) ( 𝜌𝜌 + 𝑠)𝜉                                               (6.23) 

𝐻𝑠 = 𝑠!𝐶𝑠𝑠
|
|
|
| 𝐶0 1 0 0 0 …… …… 0       0𝐶022! 𝐶11! 1 0 0     0        0𝐶033!  𝐶122! 𝐶1⋮⋮𝐶0𝑠−1(𝑠 − 1)!𝐶0𝑠𝑠!

𝐶1𝑠−2(𝑠 − 2)!𝐶0𝑠−1(𝑠 − 1)!
𝐶2𝑠−3(𝑠 − 3)!𝐶2𝑠−2(𝑠 − 2)!

1 0      0        0
𝐶𝑠−2𝐶𝑠2 − 22!

1
𝐶𝑠−1|

|
|
|
 

where 𝐶𝑠 = 𝜌 (𝜌 + 𝑠)⁄  and 𝐻0 = 1 . Substitution is (6.22) give an explicit 

solution for 𝑃(0 𝜉, 𝜂⁄ , 𝜌). 
Approximation below the Threshold 

 The problem that 𝐻𝑠 can also be expressed in the form 𝐻𝑠 = 𝐶𝑠−𝑠𝐶𝑠(0). 
where 

𝐶𝑠(𝑧) = 𝑠!∫ 𝑑𝑧1𝐶0𝑧 ∫ 𝑑𝑧2𝐶1𝑧1 ………… . .∫ 𝑑𝑧𝑠𝐶𝑠−1𝑧𝑠−1                                      (6.24) 
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is called Gontcharoff polynomial. j
th

 derivative vanishes at 𝑧 = 𝐶𝑗 . It can be 

discovered about the asymptotic behaviour of these expression by using a 

technique originally developed for a related problem. But there is an essential 

difference here which complicates matters. 

 In the application mentioned  𝐶𝑠 is an increasing positive sequence and 

this ensures that 𝐶𝑠(0) is always positive. 

 In this problem 𝐶𝑠 is a decreasing positive sequence and beyond a certain 

value of  𝑠. 𝐻𝑠  begins to oscillate with increasing amplitude and alternating 

sign. 

 In (6.23) replace 𝜉 by 𝑚 multiply it by (−𝜆)𝑚 ( 𝜉𝑚) and sum from 𝑚 = 0             

to 𝜉. 

𝐼 =∑𝐻𝑠  (𝜉𝑠) (𝜆𝐶𝑠)𝑠(1 − 𝜆𝐶𝑠)𝜉−𝑠𝜉
𝑠=0 , 𝐶𝑠 = 𝜌 (𝜌 + 𝑠)⁄                        (6.25) 

where 𝜆 is an arbitrary parameter. 

𝑇𝑠(𝜆) = (𝜉𝑠) (𝜆𝐶𝑠)𝑠(1 − 𝜆𝐶𝑠)𝜉−𝑠                                                                    (6.26) 
for large 𝜉 . The range 0 < 𝜆 < 1 ensures that 𝑇𝑠(𝜆) is positive. But 𝜆 can be 

allowed to exceed unity provided 𝑇𝑠(𝜆) remains positive near the root 𝑆0. 
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 Assume 𝜉  and 𝜌  are large and write 𝑧 = 𝑠 𝜉⁄ , 𝑑𝑧 = 1 𝜉⁄ , 𝐶(𝑧) = 𝐶𝑠,𝑇𝑠(𝜆) = 𝑇(𝑧, 𝜆)𝑑𝑧. 

               𝑇(𝑧, 𝜆)~ [ 𝜉2𝜋𝑧(1 − 𝑧)]1 2⁄  [𝜆𝐶(𝑧)𝑧 ]𝜉𝑧   [1 − 𝜆𝐶(𝑧)1 − 𝑧 ]𝜉(1−𝑧) 
= [ 𝜉2𝜋𝑧(1 − 𝑧)]1 2⁄  {1 − [𝑧 − 𝜆𝐶(𝑧)]𝑧 }𝜉𝑧   {1 + [𝑧 − 𝜆𝐶(𝑧)]1 − 𝑧 }𝜉(1−𝑧) 
= [ 𝜉2𝜋𝑧(1 − 𝑧)]1 2⁄ 𝑒𝑥𝑝{−𝜉[𝑧 − 𝜆𝐶(𝑧)]22𝑧(1 − 𝑧) + 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑜𝑤𝑒𝑟𝑠𝑜𝑓 𝑧 − 𝜆𝐶(𝑧) }      

(6.27) 

 The maximum of  𝑇(𝑧, 𝜆) is at the unique root of  𝑧 − 𝜆𝐶(𝑧) = 0. 𝑧0 is 

written us, 𝑧 − 𝜆𝐶(𝑧) = (𝑧 − 𝑧0) [1 − 𝜆𝐶′(𝑧0)] and because 𝑧 − 𝑧0 is 𝑂(𝜉1 2⁄ ) 
over its effective. 

 The normal approximation, 

𝑇(𝑧, 𝜆)~ [ 𝜉2𝜋𝑧0(1 − 𝑧0)]1 2⁄ 𝑒𝑥𝑝 {−𝜉 [1 − 𝜆𝐶′(𝑧0)]22𝑧0(1 − 𝑧0) (𝑧 − 𝑧0)2}  (6.28) 
where  𝑧0 = 𝜆𝐶(𝑧0)                        (6.29) 

 Assumed that 𝐻(𝑧) = 𝐻𝜉𝑧  

            1~∫ 𝐻(𝑧) 𝑇(𝑧, 𝜆)𝑑𝑧1
0  ~𝐻(𝑧0) ∫  𝑇(𝑧, 𝜆)𝑑𝑧1

0  
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                          ~𝐻(𝑧0)  [1 − 𝜆𝐶′(𝑧0)]⁄ = 𝐻(𝑧0) [ [1 − 𝑧0𝐶′(𝑧0) 𝐶(𝑧0)⁄ ]]⁄            (6.30) 

       𝐻(𝑧)~1 − 𝑧𝐶′(𝑧) 𝐶(𝑧)⁄  

Then 𝐶′(𝑧) 𝐶(𝑧)⁄ = −𝜉 (𝜌 + 𝑠)⁄  and approximation 

         𝐻𝑠~1 + 𝑠 (𝜌 + 𝑠)⁄ = 2 − 𝜌 (𝜌 + 𝑠)⁄                                 (6.31) 

 It depends on the assumption that 𝐻(𝑧) varies slowly. It fail for large 

value of 𝑠 corresponding to roots for which 𝜆 causes 𝑇𝑠(𝜆) to oscillate. Also, 

small value of 𝑠 have been excluded by the argument. The approximation value 

of 𝑠 upto about 𝜌. An approximation for 𝑃(𝑥 𝜉, 𝜂, 𝜌⁄ ) when 𝜉  is less than the 

threshold 𝜌. 

 Let us substitute (6.30) in the right side of (5.28). It is satisfied for 𝜉 > 0. 

                         ∑(−)𝑠 𝐻𝑠𝜉
𝑠=0 (𝜉𝑠) ( 𝜌𝜌 + 𝑠)𝜉 ~∑(−)𝑠𝜉

𝑠=0 (𝜉𝑠) [2 ( 𝜌𝜌 + 𝑠)𝜉
− ( 𝜌𝜌 + 𝑠)𝜉+1] 
= 1(𝜉 − 1)!∫ (2𝑢𝜉−1 − 𝑢𝜉 𝜉⁄ )∞

0                                                                   
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= 1(𝜉 − 1)!∫ 𝑒−𝑢 [[2𝑢−2𝜉−1 𝜌𝜉⁄ ] − [1𝜉 + 𝜉𝜌] 𝑢2𝜉 𝜌𝜉⁄ +. . …… ]  𝑑𝑢∞
0  

 The term in 𝜌−𝜉  vanishes and the loading term is, 

    −𝜉(2𝜉)! 𝜌𝜉+1 (𝜉 − 1)!⁄⁄                       (6.32) 

 For large 𝜌 is small even at 𝜉 = 1. As 𝜉 increases approximately, 

   −[𝜌 𝑒2 8(2)1 2⁄⁄ ][4𝜉 𝜌𝑒⁄ ]𝜉+2                     (6.33) 

which decreases to a minimum at about     𝜉 = 𝜌 4⁄ . 

𝑃 (0 𝜉, 𝜂, 𝜌⁄ )~ 1(𝜉 + 𝑛 − 1)! ∫ [2𝑢𝜉+𝜂−1 − 𝑢𝜉+𝜂 (𝜉 + 𝜂)⁄ ]∞
0   

(1 − 𝑒−𝑢 𝜌⁄ )𝜉 𝑒−𝑢 𝑑𝑢 

~𝜂(2𝜉 + 𝜂 − 1)(𝜉 + 𝜂)! 𝜌𝜉 + 𝑂(𝜌−𝜉−1)                                                        (6.34) 
 Then from (6.23) the value of 𝜉 below the threshold 𝜌. 

𝑃 (𝑥 𝜉, 𝜂, 𝜌⁄ )~ 𝜂𝜌𝜉−𝑥+𝜂(𝜌 + 𝑥)2𝜉−2𝑥+𝜂  (𝜉𝑥) (2𝜉 − 2𝑥 + 𝜂 − 1)!(𝜉 − 𝑥 + 𝜂)!                      
                       𝑃 (𝑥 𝜉, 𝜂, 𝜌⁄ )~ 𝜂𝜌𝑤+𝜂(𝜌 + 𝜉 − 𝑤)2𝑤+𝜂  (𝜉𝑤) (2𝑤 + 𝜂 − 1)!(𝑤 + 𝜂)!                      
 Since 𝜉 is large a further approximation leads to the result. 
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𝑃~ 𝜂𝜌𝑤+𝜂𝜉𝑤(𝜌 + 𝜉)2𝑤+𝜂  (2𝑤 + 𝜂 − 1)!𝑤! (𝑤 + 𝜂)!                             (6.35) 
Approximation above the Threshold 

 The range of 𝜉  above the threshold  𝜌 . It is necessary to study the 

behaviour of  𝐻𝑠  at values of 𝑠  beyond these which can be reached by the 

previous method. It has been mentioned that 𝐻𝑠  begins to oscillate violently 

when a exceeds a certain value. 

  𝜆 = −𝑣 (1 − 𝑣)⁄  

and 

  𝐻𝑠 = (−)𝑠[1 − (𝑠)𝑠 𝐶𝑠𝑠⁄ ]                  𝐾𝑠 = (−)𝑠(𝑠 𝜌⁄ )𝑠 𝐿𝑠        (6.36) 

Then, 

(1 − 𝑣)𝜉 =∑ 𝐾𝑠𝜉
𝑠=0 (𝜉𝑠) [𝑣(1 − 𝐶𝑠)]𝑠 [1 − 𝑣(1 − 𝐶𝑠)]𝜉−𝑠                      (6.37) 

𝑇𝑠(𝜆) replaced by 

  𝑈𝑠(𝜆) = (𝜉𝑠) [𝑣(1 − 𝐶𝑠)]𝑠 [1 − 𝑣(1 − 𝐶𝑠)]𝜉−𝑠            (6.38) 

which has peaks at the root of 

           𝑠 = 𝑣𝜉(1 − 𝐶𝑠) = 𝑣𝑠 𝜉 (𝜌 + 𝑠)⁄   

 The lower root 𝑠 = 0 is irrelevant the upper root is 𝑆0 = 𝑣𝜉 − 𝜌. 



 

84 

 

 Let 𝐻𝑠 = 1 ∗ 𝑠 (𝜌 + 𝑠)⁄ + (−)𝑠(𝑠 𝜌⁄ )𝑠 𝐿𝑠                                (6.39) 

Substituting (5.39) in (5.23) 

𝛿(𝜉 − 𝑥)~∑(1 + 𝑠𝜌 + 𝑠) (−)𝑠𝜉
𝑠=0 (𝜉𝑠) ( 𝜌𝜌 + 𝑠)𝜉∑𝐿𝑠𝜉

𝑠=0 (𝜉𝑠) ( 𝑠𝜌 + 𝑠)𝑠 ( 𝜌𝜌 + 𝑠)𝜉−𝑠 
(6.40) 

                    = 𝐴 + 𝐵 

 The second term 𝐵  can be expressed as ∑𝐿𝑠𝑈𝑠(1)  put 𝑧 = 𝑠 𝜉⁄  and       𝑈𝑠(1) = 𝑈(𝑧, 1)𝑑𝑧. The upper root (5.38) is 𝑆0 = 𝜉 − 𝜌 and provided that is for 

from zero.𝑈(𝑧, 1) will have an isolated peak 𝑧0 = 1 − 𝜌 𝜉⁄  near which 

𝑈(𝑧, 1)~ [ 𝜉2𝜋𝑧0(1 − 𝑧0)]1 2⁄ 𝑒𝑥𝑝 {−𝜉 [1 − 𝜆𝐶′(𝑧0)]22𝑧0(1 − 𝑧0) (𝑧 − 𝑧0)2}        (6.41) 
 Assume that 𝐿𝑠 = 𝐿(𝑧). 
   𝐵~𝐿(𝑧0) [1 − 𝐶′(𝑧0)]⁄ = 𝜌𝐿𝜉−𝜌 (𝜉 − 𝜌)⁄           (6.42) 

where  𝜉 is much greater than 𝜌 which is itself large under these condition there 

is a remarkable simple approximation for 𝑃(𝑥 𝜉, 𝜂, 𝜌⁄ ) in the region of large 

epidemics. The term in 𝐴 die any away rapidly and their sum approximates to, 

∑(−𝜉 𝑒−𝜉 𝜌⁄ )𝑠 𝑠!⁄∞
𝑠=0 = 𝑒𝑥𝑝 (−𝜉−𝜉 𝜌⁄ )                                         (6.43) 
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Hence, 

   𝜌𝐿𝜉 𝜌⁄ (𝜉 − 𝜌)⁄ ~ − 𝑒𝑥𝑝(−𝜉 𝑒−𝜉 𝜌⁄ )            (6.44) 

 The formula for 𝑃(0 𝜉, 𝜂, 𝜌⁄ ) corresponding to (6.40) is 

𝑃 (0 𝜉, 𝜂, 𝜌⁄ )~∑(1 + 𝑠𝜌 + 𝑠) (−)𝑠𝜉
𝑠=0 (𝜉𝑠) ( 𝜌𝜌 + 𝑠)𝜉+𝜂                         

+∑𝐿𝑠𝜉
𝑠=0 (𝜉𝑠) ( 𝑠𝜌 + 𝑠) ( 𝜌𝜌 + 𝑠)𝜉−𝑥+𝜂 

Suppose that 𝜂 is small. Compared with  (6.40) to the order of approximation 

considered the effect of the extra factor [𝜌 (𝜌 + 𝑠)⁄ ]𝜂 is to leave the first term 

unaltered and to multiply the second term by [𝜌 (𝜌 + 𝑠0)⁄ ]𝜂 = (𝜌 𝜉⁄ )𝜂 . It 

follows that, 

𝑃(0 𝜉, 𝜂, 𝜌⁄ )~[1 − (𝜌 𝜉⁄ )𝜂] 𝑒𝑥𝑝 (−𝜉−𝜉 𝜌⁄ )                         (6.45) 

then from () for small values of 𝑥 

𝑃 (𝑥 𝜉, 𝜂, 𝜌⁄ )~ [1 − (𝜌 𝜉⁄ )𝜂]  (𝜉𝑒−𝜉 𝜌⁄ )𝑥𝑥!  𝑒𝑥𝑝 (−𝜉−𝜉 𝜌⁄ )       (6.46) 
 The threshold is large but the population size is much larger the 

distribution of the number remaining uninfected in a large epidemic has 

approximately the Poisson form with the deterministic mean 𝜉𝑒−𝜉 𝜌⁄ . 
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                                                     𝜌~(𝜌 𝜉⁄ )𝜂  𝜂𝜌𝑤𝜉𝑤+𝜂(𝜌 + 𝑤)2𝑤+𝜂   (2𝑤 + 𝜂 − 1)!𝑤! (𝑤 + 𝜂)!  

A More Refined Approximation: 

 When 𝜉 is not much larger then 𝜌.  

𝐴 = 1(𝜉 − 1)! ∫ 𝑢𝜉−1 (2 − 𝑢 𝜉⁄ ) (1 − 𝑒−𝑢 𝜌⁄ )𝜉  𝑒−𝑢 𝑑𝑢∞
0   

𝐴 = 𝜉𝜉(𝜉 − 1)! ∫ 𝑣𝜉−1 (2 − 𝑣) (1 − 𝑒−𝑣𝜉 𝜌⁄ )𝜉  𝑒−𝜉𝑣 𝑑𝑣∞
0                (6.48) 

Threshold theorems 

 Rajarshi [34]  gives a simpler proofs of two threshold theorems for a 

general stochastic epidemic using reflection principle. 

 A fairly elementary proof for the threshold theorems due to, Williams and 

Whittle, simpler than Bailey[3] is given. The proofs are based on an application 

of the reflection principle through the ballot problem. 

Some important definitions 

One dimensional random walk 

 It is a Markov Chain whose state space is a finite or infinite subset a, 

a+1,……b of the integers in which the particle if it is in state i can in a single 

transition either stay i or move to one of the adjacent states i – 1 , i + 1. 
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Total size of the Epidemic  

 It is the total number of removals after the elapse of a very long, ideally 

infinite period of time. 

Intensity of the epidemic 

 It is the proportion of the total number of susceptibles that finally 

contracts the disease and is denotes by i. 

Relative removal rate 

 The ratio of removal rate to infection rate is known as the relative 

removal rate and is denoted by = 𝛾 𝛽⁄  .  

Relative removal rate per susceptible 

 The ratio of removal rate to the number of susceptible is called  the 

relative removal rate per susceptible  and is denoted by 𝜃 = 𝜌 𝑛⁄  . 

Reflection principle 

 This principle relates to the fact that there is a one to one correspondence 

between all paths from  A(a1,a2) to B(b1,b2) which touch or cross the X – axis 

and all paths  from  𝐴′(𝑎1, −𝑎2) to B. 
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Ballot problem 

 Suppose that in a ballot candidate P scores p votes and candidate Q scores 

q votes where p > q. The probability  that throughout the counting there are 

always more votes for P than for 𝑄 = 𝑝−𝑞𝑝+𝑞 . 

Ballot Theorem 6.1 

 Let n and x be positive integers. There are exactly 𝑥 𝑛⁄  𝑁𝑛, 𝑥  paths (𝑆1,…… . 𝑆𝑛 = 𝑥) from the origin to (𝑛, 𝑥) such that 𝑆1 > 0… . 𝑆𝑛 > 0. 

Proof 

 Clearly there exists exactly as many admissible paths as there are paths 

from (1,1) to (𝑛, 𝑥) which neither touch or cross the t axis. 

 The number of such paths equals 

  𝑁𝑛−1,𝑥−1 −𝑁𝑛−1,𝑥+1 = (𝑝 + 𝑞 − 1𝑝 − 1 ) − (𝑝 + 𝑞 − 1𝑝 ) 

    R.H.S = 𝑁𝑛,𝑥 (𝑝 − 𝑞𝑝 + 𝑞) 
 Recently a more direct algebraic proof of the threshold theorem for large 

n has been obtained by William. Also an ingenious method of investigating 

limiting behaviour more fully has been found by Whittle. 
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William’s Threshold Theorem 6.2 

 If n is sufficiently large then 𝑃(𝜃) the probability of a finite epidemic size 

is given by 𝑃(𝜃) = {𝜃𝑎  𝑖𝑓 𝜃 < 11 𝑖𝑓 𝜃 ≥ 1  

Proof 

Let {𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑡 ≥ 0} be a general stochastic epidemic with 𝛽 and 𝛾 as the infection and removal rates respectively. Where  𝑋(𝑡) is the number of 

susceptibles at t, 𝑌(𝑡) is the number of infectious persons at t and 𝑍(𝑡) the 

number of removal in (0, 𝑡)  we assume that  

𝑃[𝑥(0) = 𝑛, 𝑦(0) = 𝑎, 𝑧(0) = 0] = 1     

Let the intensity of an epidemic be denoted by i. 

Let 𝑊 = lim𝑡→∞ 𝑍(𝑡) − 𝑎 be the size of an epidemic. 

Then with 𝑃(𝜔) = 𝑃(𝑊 = 𝜔) = 𝜋𝑖 = ∑ 𝑃(𝜔)𝑛𝑖𝑊=0  gives the probability 

of an epidemic with intensity not greater than i. 

Let us  regard the progress of the epidemic interms of the succession of 

population states represented by the points (𝑟, 𝑠). The process is thus seen as a 

random walk starting from the point (𝑛, 𝑎) and ending at one of the points (𝑛 − 𝑤, 0). 
0 ≤ 𝑤 ≤ 𝑛, with an absorbing barrier along the line s = 0. 
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The transitional probabilities are 

 𝑃𝑟[(𝑟, 𝑠) → (𝑟 − 1, 𝑠 + 1)] = 𝑟 𝑟 + 𝜌⁄   

and 𝑃𝑟[(𝑟, 𝑠) → (𝑟, 𝑠 − 1)] = 𝜌 𝑟 + 𝜌⁄  

The formula required can be written down more or less directly by 

considering the sum of the probabilities of all possible paths from                       (𝑛, 𝑎) to (𝑛 − 𝑤, 0) . One way   of doing this is to take all paths to the point (𝑛 − 𝑤, 1) which do not go below the line s = 1 followed by the final step to (𝑛 − 𝑤, 0) with probability 𝜌 𝑛 + 𝜌⁄ − 𝑤  

Let us  obtain 

0 1( ) ( 1) .......( )
( )

( )( )......( )

w
a w

n n n wn
P W

n w n n w

    
 


    

   
 

Where the summation is over all compositions 𝒂 + 𝒘− 𝟏 into 𝒘+ 𝟏 

parts such that 

0 ≤∑𝛼𝑗𝑖
𝑗=0 < 𝑎 + 𝑖 − 1 

for 0 ≤ 𝑖 < 𝑤 − 1 and 1 ≤ 𝛼𝑤 ≤ 𝑎 + 𝑤 − 1. 

 Let A be the collection of all 𝛼̅ = (𝛼0, 𝛼1, …… . 𝛼𝑤) such that 𝛼𝑖 is a non 

negative integer for every i. 
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𝛼0 + 𝛼1 +⋯… .𝛼𝑗 < 𝑎 + 𝑗 for j = 0,1,2,…..w -1 

𝛼𝑤 ≥ 1 𝑎𝑛𝑑 𝛼0 + 𝛼1 +⋯… .+𝛼𝑤 = 𝑎 + 𝑤 

Then  

𝑃(𝑤) = 𝑛(𝑛 − 1)………(𝑛 − (𝑤 − 1))(𝑛 + 𝜌)(𝑛 + 𝜌 − 1)… . (𝑛 + 𝜌 − (𝑤 − 1)) 𝜌𝑎+𝑤∑∏(𝑛 + 𝜌 − 𝑟)−𝛼𝑛𝑤
𝑟=0𝛼∈𝐴  

For a fixed w, ( and a sufficiently large n), 

n(n − 1)……… (n − (w − 1))(n + ρ)(n + ρ − 1)… . (n + ρ − (w− 1)) ⋍ nw(n + ρ)w 

∏(𝑛 + 𝜌 − 𝑟)−𝛼𝑛𝑤
𝑟=0 =∏ 1(𝑛 + 𝜌 − 𝑟)𝛼𝑛𝑤

𝑟=0  

          = 1(𝑛 + 𝜌 − 𝑟)𝛼0  . 1(𝑛 + 𝜌 − 𝑟)𝛼1 … . . 1(𝑛 + 𝜌 − 𝑟)𝛼𝑤 …… 

 = 1(𝑛 + 𝜌)𝛼0 [1 − 𝑟𝑛 + 𝜌]𝛼0  . 1(𝑛 + 𝜌)𝛼1 [1 − 𝑟𝑛 + 𝜌]𝛼1 ……………. 
                                              1(𝑛 + 𝜌)𝛼𝑤 [1 − 𝑟𝑛 + 𝜌]𝛼𝑤 . … 

         = 1(𝑛 + 𝜌)𝛼0(𝑛 + 𝜌)𝛼1 …… . . (𝑛 + 𝜌)𝛼𝑤   
         = 1(𝑛 + 𝜌)𝛼0+𝛼1+⋯…….+𝛼𝑤 = 1(𝑛 + 𝜌)𝑎+𝑤 



 

92 

 

            = ( 1𝑛 + 𝜌)𝑎+𝑤 

Lemma 6.3 

 Let x and y be two positive integers. Suppose on a two dimensional 

plane, we allow only the two types of transition: (𝑥′, 𝑦′) to (𝑥′ − 1, 𝑦′ − 1) (to 

the north west) and (𝑥′, 𝑦′) to (𝑥′, 𝑦′ − 1) (to the south). Where 𝑥′ and 𝑦′ are 

non negative integers. Then the total number of ways of reaching (0,0) from 

(x,y) without touching or crossing the x axis is given by 

(2𝑥 + 𝑦 − 1𝑥 ) . 𝑦𝑥 + 𝑦 

  To arrive at (0,0) we first observe that there have to be x transitions of the 

type I and x + y transitions of the type II. To every transition of the north west 

type we associate a south east transition and to every transition to the south we 

associate a north east transition. In this new walk, the condition of not touching 

or crossing the x axis in naturally retained. The situation is similar to the ballot 

problem. 

 Out of 2x + y total votes, the winner wins by y votes. The total number of 

ways in which he maintains the lead throughout the counting is  

(𝑁2𝑥+𝑦,𝑦). 𝑦𝑥 + 𝑦 
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Where  𝑁𝑚, 𝑟 = ( 𝑚1 2 (𝑚 − 𝑟)⁄ ) 
𝑁2𝑥+𝑦,𝑦 = ( 2𝑥 + 𝑦1 2⁄ (2𝑥 + 𝑦 − 𝑦)) = (2𝑥 + 𝑦𝑥 ) 𝑦𝑥 + 𝑦 

Going back to the general stochastic epidemic we imbed a discrete time process 

and plot the number of susceptibles and the number of infectives on the (x,y) 

plane. Let us  notice that the north west transition is a new infection and the 

transition to the south corresponds to a removal of a case. Thus in a two 

dimensional random walk, subjected to the above conditions, we are looking for 

the number of paths reaching (n – w , 0) from (n , a) . 

𝑃(𝑤) = ( 𝑛𝑛 + 𝜌)𝑤  𝜌𝑎+𝑤  ( 1𝑛 + 𝜌)𝑎+𝑤 

Taking x = w , y = a  

= ( 𝑛𝑛(1 + 𝜌 𝑛⁄ ))𝑤  𝜌𝑎+𝑤𝜌𝑎+𝑤(1 + 𝜌 𝑛⁄ )𝑎+𝑤  (2𝑥 + 𝑦𝑥 ) . 𝑦2𝑥 + 𝑦 

                      = ( 11 + 𝜃)𝑤  1(1 + 1 𝜃⁄ )𝑎+𝑤  (2𝑤 + 𝑎𝑤 ) . 𝑎2𝑤 + 𝑎 

2 1

1 1 2

w a w
w a a

a
w w a w a


 

               
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2 1 1

1 1

w a w
w a

a
w w a


 

               
 

𝑝 = 𝜃1 + 𝜃 , 𝑞 = 1 − 𝑝 , 𝑞 = 1 − 𝜃1 + 𝜃 = 11 + 𝜃 

            
2 1

( ) a w wa w a
P W p q

w w a

 


 
 

P(w) is wth term in the expansion   (1 − |𝑝−𝑞|2𝑞 )𝑎 

∑𝑃(𝑤)∞
𝑤=0 = [1 − | 𝜃1 + 𝜃 − (1 − 𝜃1 + 𝜃)|2 ( 11 + 𝜃) ]𝑎 

                              =  [1 + 𝜃 − |𝜃 − 1|]2 𝑎 = [min (𝜃, 1)]𝑎 

= [(1 + 𝜃) + (𝜃 − 1)2 ]𝑎 = 𝜃𝑎    𝑖𝑓 𝜃 < 1 → 𝜃 − 1 < 0𝜃 > 1, 𝜃 − 1 > 0  

= (1 + 𝜃) − (𝜃 − 1)2 = 22 = 1 

Therefore  𝑃(𝜃) = 𝜃𝑎 if 𝜃 < 1, if 𝜃 ≥ 1. 

(i.e) when the relative removal rate per susceptible 𝜃 is greater than or equal to 

unity there is no true epidemic, while if it is less than unity a true epidemic can 

occur with probability 1 − 𝜃. 
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Whittle’s Threshold Theorem 6.4 

 For an epidemic with intensity i, we have  

[min (𝜃, 1)]𝑎 < 𝜋𝑖 < [min ( 𝜃1 − 𝑖 , 1)]𝑎 

Proof:- 

 Let us consider an epidemic  {𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡); 𝜆, 𝜇, 𝑡 > 0} for which the 

conditional probability of a new infection in (𝑡, 𝑡 + ℎ) is 𝜆𝑦(𝑡)ℎ + 𝑜(ℎ) and the 

same for a removal is 𝜇𝑦(𝑡)ℎ + 𝑜(ℎ). 
 Then the epidemic with intensity is faster than the epidemic with                      𝜆 = 𝛽𝑛(1 − 𝑖) 𝜇 = 𝛾 and it is slower than the epidemic with = 𝛽𝑛   𝜇 = 𝛾. 

 Let 𝑃(𝑤, 𝜆, 𝜇)  denotes the probability that 𝑊 = 𝑤  for {𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡); 𝜆, 𝜇, 𝑡 > 0} 
  𝑃(𝑤, 𝜆, 𝜇) 

                                      
2 1 1

1 1

a w w
w a

a
w w a


 

               
 

                                                     

2 1 1

1 1

a w w
w a n

a
w w a n n


 


    

          
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2 1 1

1 1

wa w
w a

a
w w a


  


   

         
 

                                                      

2 1 1

1 1

a w w
w a

a
w w a

 
   


    

          
 

                                                  

2 1 1

1

wa w
w a

a
w w a


   


   

         
 

                                              
2 1

a w w
w a

a
w w a

 
   


    

          
 

𝑃[𝑛, 𝜆, 𝜇] = 1 − ∑ 𝑃(𝑤, 𝜆, 𝜇)𝑛−1
𝑤=0  

∑𝑃(𝑤, 𝜆, 𝜇)∞
𝑤=0 = [(𝑚𝑖𝑛{(𝜆 𝜇⁄ )−1, 1})]𝑎 

and comparing the epidemic with intensity i 

𝜌 = 𝜇 𝜆    , 𝜋𝑖 = ∑ 𝑃𝑤𝑛𝑖
𝑤=0⁄  
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(i) 𝜌 < 𝑛(1 − 𝑖), (𝜌 𝑛⁄ )𝑎 < 𝜋𝑖 < (𝜌 𝑛(1 − 𝑖))⁄ 𝑎
 

(ii)  𝑛(1 − 𝑖) ≤ 𝜌 < 𝑛, (𝜌 𝑛⁄ )𝑎 ≤ 𝜋𝑖 < 1 

(iii) 𝜌 < 𝑛(1 − 𝑖), (𝜌 𝑛⁄ )𝑎 < 𝜋𝑖 < (𝜌 𝑛(1 − 𝑖))⁄ 𝑎
 

Therefore  𝜌 ≥ 𝑛, there is zero probability of an epidemic exceeding any 

pre assigned intensity i. While 𝜌 < 𝑛, the probability of an epidemic is 

approximately  1 − (𝜌 𝑛⁄ )𝑎 for small i. Returning to the fast and slow 

processes with 𝜆 = 𝛽𝑛 and 𝜆 = 𝛽𝑛(1 − 𝑖) respectively. 

∑𝑃𝑤𝑛𝑖
0 (𝛽𝑛) ≤ 𝜋𝑖 =∑𝑃𝑤𝑛𝑖

0 ≤∑𝑃𝑤𝑛𝑖
0 (𝛽𝑛 − 𝛽𝑛𝑖) 

For sufficiently large n, 

[𝑚𝑖𝑛(𝜌 𝑛⁄ , 1)]𝑎 ≤ 𝜋𝑖 ≤ [𝑚𝑖𝑛(𝜌 𝑛(1 − 𝑖)⁄ , 1)]𝑎    () 

Where 𝜌 = 𝜇 𝜆⁄ . 

Slower process 𝜇 𝜆⁄ = 𝛾 𝛽𝑛(1 − 𝑖) = 𝜌 𝑛(1 − 𝑖)⁄⁄ . 

Faster process 𝜇 𝜆⁄ = 𝛾 𝛽𝑛 = 𝜌 𝑛⁄⁄ . 

Three main cases follow from () 

(i) 𝜌 < 𝑛(1 − 𝑖), (𝜌 𝑛⁄ ) < 𝜋𝑖 < (𝜌 𝑛(1 − 𝑖))⁄ 𝑎
 

(ii)  𝑛(1 − 𝑖) ≤ 𝜌 < 𝑛, (𝜌 𝑛⁄ )𝑎 ≤ 𝜋𝑖 ≤ 1 

(iii) 𝑛 < 𝜌, 𝜋𝑖 = 1 



98 

 

CHAPTER VII 

SIMPLER PROOFS OF TWO THRESHOLD THEOREMS FOR A 

GENERAL STOCHASTIC EPIDEMIC 

Threshold theorems 

 A fairly elementary proof for the threshold theorems due to, Williams and 

Whittle, simpler than Bailey[3] is given. The proofs are based on an application 

of the reflection principle through the ballot problem and the exact distribution 

of the size of the epidemic as derived by Foster [14]. William’s threshold 

theorem is extended to an epidemic with multiple introduction of cases. 

Introduction 

 Let {(𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑡 ≧ 0)} be a general stochastic epidemic with 𝛽 

and 𝛾  as the infection and removal rates respectively, where                      𝑋(𝑡)  = number of susceptibles at 𝑡, 𝑌(𝑡) = number of infectious persons at 𝑡 

and 𝑍(𝑡) = number of removals in (0, 𝑡).  

𝑃[𝑋(0) = 𝑛; 𝑌(0) = 𝑎; 𝑍(0) = 0] = 1. 

 Let the intensity of an epidemic be denoted by 𝑖 . Let                      𝑊 = 𝑙𝑖𝑚𝑡→∞𝑍(𝑡) − 𝑎  be the size of the epidemic. Then with                       𝑃(𝑤) = 𝑃[𝑊 = 𝑤}, 𝜋𝑖 = 𝑃(𝑤)  gives the probability of an epidemic with 

intensity not greater than 𝑖. 
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 Let 𝜌 = 𝛾 𝛽⁄  be the  relative  removal rate and 𝜃 = 𝜌 𝑛⁄  be the relative 

removal rate per susceptible.  

William’s Threshold Theorem 7.1 

 If 𝑛 is sufficiently large then 𝑃(𝜃) the probability of a finite epidemic 

size is given by 

𝑃(𝜃) = {𝜃𝑎 𝑖𝑓 𝜃 < 11 𝑖𝑓 𝜃 ≥ 1  

 Let A be the collection of all 𝛼̅ = (𝛼0, 𝛼1, … … . 𝛼𝑤) such that 𝛼𝑖 is a non 

negative integer for every i. 

𝛼0 + 𝛼1 + ⋯ … . 𝛼𝑗 < 𝑎 + 𝑗 for j = 0,1,2,…..w -1 

𝛼𝑤 ≥ 1 𝑎𝑛𝑑 𝛼0 + 𝛼1 + ⋯ … . +𝛼𝑤 = 𝑎 + 𝑤 

Then  

𝑃(𝑤) = 𝑛(𝑛 − 1) … … … (𝑛 − (𝑤 − 1))(𝑛 + 𝜌)(𝑛 + 𝜌 − 1) … . (𝑛 + 𝜌 − (𝑤 − 1)) 𝜌𝑎+𝑤 ∑ ∏(𝑛 + 𝜌 − 𝑟)−𝛼𝑛𝑤
𝑟=0𝛼∈𝐴  

      (7.1) 

For a fixed 𝑤, ( and a sufficiently large 𝑛), 

               𝑛(𝑛 − 1) … … … (𝑛 − (𝑤 − 1))(𝑛 + 𝜌)(𝑛 + 𝜌 − 1) … . (𝑛 + 𝜌 − (𝑤 − 1)) ≈ ( 𝑛𝑛 + 𝜌)𝑤                 (7.2) 
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and 

                                                    ∏(𝑛 + 𝜌 − 𝑟)−𝛼𝑟𝑤
𝑟=0 ≈ ( 1𝑛 + 𝜌)𝑎+𝑤                     (7.3) 

Lemma 7.2 

 Let 𝑥  and 𝑦  be two positive integers. Suppose on a two dimensional 

plane, we allow only the two types of transition: (𝑥′, 𝑦′) to (𝑥′ − 1, 𝑦′ − 1) (to 

the north west) and (𝑥′, 𝑦′) to (𝑥′, 𝑦′ − 1) (to the south). Where 𝑥′ and 𝑦′ are 

non negative integers. Then the total number of ways of reaching (0,0) from (𝑥, 𝑦) without touching or crossing the 𝑥 axis is given by 

(2𝑥 + 𝑦 − 1𝑥 ) . 𝑦𝑥 + 𝑦                                                       (7.4) 

  To arrive at (0,0) we first observe that there have to be 𝑥 transitions of 

the type I and 𝑥 +  𝑦 transitions of the type II. To every transition of the north 

west type let us associate a south east transition and to every transition to the 

south we associate a north east transition. In this new walk, the condition of not 

touching or crossing the 𝑥 axis in naturally retained. The situation is similar to 

the ballot problem. 

 Out of 2𝑥 +  𝑦 total votes, the winner wins by 𝑦 votes. The total number 

of ways in which he maintains the lead throughout the counting is  
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(𝑁2𝑥+𝑦,𝑦). 𝑦𝑥 + 𝑦 

Where  𝑁𝑚, 𝑟 = ( 𝑚1 2 (𝑚 − 𝑟)⁄ ) 

𝑁2𝑥+𝑦,𝑦 = ( 2𝑥 + 𝑦1 2⁄ (2𝑥 + 𝑦 − 𝑦)) = (2𝑥 + 𝑦𝑥 ) 𝑦𝑥 + 𝑦 

 Going back to the general stochastic epidemic we imbed a discrete time 

process and plot the number of susceptibles and the number of infectives on the (𝑥, 𝑦) plane. Then we notice that the north west transition is a new infection and 

the transition to the south corresponds to a removal of a case. Thus in a two 

dimensional random walk, subjected to the above conditions, we are looking for 

the number of paths reaching (𝑛 –  𝑤 , 0) from (𝑛 , 𝑎) .Taking 𝑥 =  𝑤 , 𝑦 =  𝑎  
𝑃(𝑤) = (2𝑤 + 𝑎 − 1)! 𝑎𝑤! (𝑤 + 𝑎)!    ( 𝜃𝜃 + 1)𝑎+𝑤  ( 11 + 𝜃)𝑤                  (7.5) 

 Let 𝑝 = 𝜃 (1 + 𝜃)⁄  and 𝑞 = 1 − 𝑝. Let us seen that 𝑃(𝑤)  is  the 𝑤 the 

term in the expansion  {(1 − |𝑝 − 𝑞| 2𝑞⁄ )}𝑎 . Thus 

∑ 𝑃(𝑤)∞
𝑤=0 = (𝑚𝑖𝑛{𝜃, 1})𝑎                                                                  (7.6) 

This completes the proof for William’s Theorem. 
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Whittle’s Threshold Theorem 7.3 

 For an epidemic with intensity 𝑖, we have  

[𝑚𝑖𝑛 (𝜃, 1)]𝑎 < 𝜋𝑖 < [𝑚𝑖𝑛 ( 𝜃1 − 𝑖 , 1)]𝑎
 

provided 𝑛 is sufficiently large. 

Proof 

 Let us consider an epidemic  {𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡); 𝜆, 𝜇, 𝑡 > 0} for which the 

conditional probability of a new infection in (𝑡, 𝑡 + ℎ) is 𝜆𝑦(𝑡)ℎ + 𝑜(ℎ) and the 

same for a removal is 𝜇𝑦(𝑡)ℎ + 𝑜(ℎ). 

 Then the epidemic with intensity is faster than the epidemic with                      𝜆 = 𝛽𝑛(1 − 𝑖) 𝜇 = 𝛾 and it is slower than the epidemic with 𝜆 = 𝛽𝑛,     𝜇 = 𝛾. 

 Let 𝑃(𝑤, 𝜆, 𝜇)  denotes the probability that 𝑊 = 𝑤  for {𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡); 𝜆, 𝜇, 𝑡 > 0} 

𝑃(𝑤; 𝜆, 𝜇) = (2𝑤 + 𝑎 − 1)! 𝑎𝑤! (𝑤 + 𝑎)!  ( 𝜆𝜆 + 𝜇)𝑤 ( 𝜇𝜆 + 𝜇)𝑤+𝑎 ;  
𝑤 = 0,1,2, … . . , 𝑛 − 1 

𝑃[𝑛; 𝜆, 𝜇] = 1 − ∑ 𝑃(𝑤; 𝜆, 𝜇)𝑛−1
𝑤=0                                                     (7.7) 
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∑ 𝑃(𝑤, 𝜆, 𝜇)∞

𝑤=0 = [(𝑚𝑖𝑛{(𝜆 𝜇⁄ )−1, 1})]𝑎                                      
and comparing the epidemic with intensity  𝑖 , with the faster and slower 

epidemics, the proof is complete. 
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CHAPTER VIII 

ON THE ASYMPTOTIC DISTRIBUTION OF THE SIZE OF A 

STOCHASTIC EPIDEMIC 

Introduction        

   For  a  stochastic  epidemic of the type it was shown that when the 

threshold is large but the population sign in much larger, the distribution of this 

number remaining un infected in a large epidemic has approximately the 

Poisson  form. A sample proof is given without use of Daniel’s assumption that 

the original number of infectives is small, based on a construction of the 

epidemic process which is more explicit then the usual description are given by 

[39]. 

        Let a population which at time 𝑡 = 0 , consist of 𝑋(0)  =  𝑛  healthy 

individuals and 𝑌(0)  =  𝑚 individual with a contagious infection. An epidemic 

in such a population is often modeled by a continuous time Markov process as 

follows. 

      If 𝑋(𝑡)  and 𝑌(𝑡)  are the number of healthy individual and infectious 

individual respectively, present at time t then the transition probabilities are 

given by  
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 𝑃{𝑋 (𝑡 + 𝛿), 𝑌(𝑟 + 𝛿)  =  ( 𝑥′, 𝑦′ )/( 𝑋(𝑡), 𝑌(𝑡)  =  (𝑥, 𝑦))}   
                                       =  𝑥𝑦𝛿 + 𝑜(𝛿) 𝑓𝑜𝑟 {(𝑥′, 𝑦′) =  (𝑥 − 1, 𝑦 + 1)} 

                                       =  𝜌𝑦𝛿 +  𝑜(𝛿) 𝑓𝑜𝑟 (𝑥′, 𝑦′) =  (𝑥, 𝑦 − 1) 

                                        =  1 − 𝑥𝑦𝛿 − 𝜌𝑦𝛿 + 𝑜(𝛿) 𝑓𝑜𝑟 (𝑥′, 𝑦′) = (𝑥, 𝑦)                 
   (8.1) 

    The transitions listed represent the infection of a healthy individual, the 

removal of an infectious individual from the population and no change 

respectively. All other possible transition in [𝑡 , 𝑡 +  𝛿]  are assumed to have 

collective probability𝑜(𝛿). The positive constant 𝜌 is called thresholds on the 

relative removal rate of the epidemic. 

    The starts of the form ( 𝑥 ,0 ) are absorbing so that no more transition occur 

after the last infectious individuals has been removed. 

    Absorption at ( 𝑥, 0 ) means that x individuals have escaped infection at end 

of the epidemic and that  𝑋(∞)  =  𝑥, when (∞) = lim𝑡→∞  𝑋(𝑡) . 

Construction of  the Epidemic Process 

        Let the 𝑛 originally healthy individuals be indexed by  𝑖, 1 ≦  𝑖 ≦  𝑛 and 

let   m originally infectious individuals be indexed by 𝑗, 1 ≦  𝑗 ≦  𝑚. 
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 Let (𝑟̂𝑗)𝑗=1𝑚
 and (𝑟𝑗)𝑗=1𝑛 be  i.i.d  random variables unit density 𝜌𝑒−𝜌𝑡 on [0, ∞]. 

 Individual 𝑗 in the original infectious group will remain infectious group 

will remain infectious for 𝑟𝑗  time units before removal from the population. 

Individual I in the original healthy group will remain infectious for 𝑟𝑖 time unit 

of an individual becomes infected.                                 

   Let  { 𝐼𝑖  }𝑖=1𝑛
  be  i.i.d random variables with density 𝑒−1  on [0, ∞]  independent of 𝑟̃𝑗′𝑠  and  𝑟𝑖′𝑠. 

 The variable 𝐼𝑖 is resistance of infection of an individual 𝑖 in the original 

healthy group. Let  { 𝐼(𝑘) }𝑘=1𝑛 be  the  associated order varieties  so  that                   𝑙(1) <  𝑙(2) <  … … … … … . <  𝑙(𝑛) . Let 𝑟(𝑘) = 𝑟 if  𝐼(𝑘) = 1. 

 The originally infected individual 𝑗 remains in the population for  𝑟𝑗  time 

units  after  which infected individuals is removed.  The healthy individual 𝑖 
accumulates exposure to infection at a rate equal to the number of   infected 

individuals present.  

 When the total exposure to infection of healthy individuals  𝑖  reaches 𝐼𝑖,  
individual 𝑖 become infected and then remain the population for an additional  𝑟𝑖  
time units before removal. 
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 Suppose (𝑋(𝑡), 𝑌(𝑡) = (𝑥, 𝑦)) the probability that the particular infected 

individual is removed in the time interval [𝑡, 𝑡 + 𝛿] is 𝜌𝛿 + 𝑜(𝛿) because the 

distribution of the 𝑟𝑗′𝑠  and  𝑟𝑖′𝑠 has constant hazard rate 𝜌. 

 The probability that exactly one of the 𝑦 infected individuals is removed 

in  [ 𝑡, 𝑡 + 𝛿 ] is therefore 𝜌 𝑦 𝛿 + 𝑜(𝛿). 

 The probability that a particular one of these healthy individuals become 

infected in [ 𝑡, 𝑡 + 𝛿 ] is 𝜌𝑦𝛿 + 𝑜(𝛿). So that the probability that exactly one of 

the healthy individuals become infected is 𝑥 𝑦 𝛿 + 𝑜(𝛿).       

  The Markov property follows from the memory less property of the 

exponential distribution. 

 Let 𝑣 be the number of new infectious occurring during the course of the 

epidemic. 

 If   (1)

1

ˆ
m

j

j

l r


  then all originally infectious individuals are removed 

before the resistance to infectious of any healthy individuals has been exceeded 

so that 𝑣 = 0.  

 Otherwise the originally healthy individuals associated with 𝑙(1), becomes 

the first new infections and  𝑣 ≧ 1. 
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   An easy induction argument shows that 𝑣 + 1  is the smallest 𝑘,                       1 ≦ 𝑘 ≦ 𝑛 for which 

   

1
( )

( )

1 1

ˆ
m k

i
k j

j i

l r r


 

    

in this inequality does not hold for any 𝑘, 1 ≦ 𝑘 ≦ 𝑛 then 𝑣 = 𝑛.                            

     Let us define 
( )

1 1

ˆ
m v

i
j

j i

R r r
 

    then  𝑅  is  the  amount  of  exposure to
                

infection with stood by those individuals who remain healthy at the end of the 

epidemic and 𝑋(∞) = 𝑛 − 𝑣 is the number of  𝑙(𝑖)’𝑠  greater then 𝑅. 

  Theorem  8.1 

      If  𝑛𝑘 → ∞ and 𝜌𝑘 → ∞    and  

 𝑛𝑘 𝑒𝑥𝑝 { − 𝑛𝑘 +𝑚𝑘 𝜌𝑘 } →  𝑏,      0 < 𝑏 < ∞                                           (8.3)        

  Then 𝑋𝑘(∞) converges distribution to a Poisson random variable with mean 𝑏. 

Proof  

       The subscript 𝑘 will again be suppressed 

Taking logarithms in 𝑛𝑒−(𝑚+𝑛)/𝜌 → 𝑏 yields 

  ⟹ 𝑙𝑜𝑔 𝑛 − 𝑛+𝑚 𝜌  →  𝑙𝑜𝑔 𝑏, so that  

(8.2)
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  𝜌 ~ 𝑚 + 𝑛 / 𝑙𝑜𝑔 𝑛 

     This 𝜌 is 𝑜(𝑚 + 𝑛) but (𝑚 + 𝑛)𝛾  
  is 𝑜(𝜌) for  0 < 𝛾 < 1. 

Lemma 8.2 

         Let 0 <∈< 1 be given if  𝜌 <∈ ²(𝑚 + 𝑛)  then  

                 𝑃{𝑥(∞) >∈ (𝑚 + 𝑛)}  <  [ 𝜌∈(𝑚+𝑛)]𝑚 < ∈𝑚 ≦ ∈                        

Proof 

           The population of infected individuals as a continuous time birth and 

death process with a variable birth rate. The ratio of death rate to birth rate is 𝜌/ 𝑋(𝑡) which is less than 𝜌/∈ (𝑚 + 𝑛),  until  𝑋(𝑡) ≤∈ (𝑚 + 𝑛).  

 The probability that a birth and death process starting at 𝑚 and with a 

death rate to birth rate ratio 𝑞 < 1  is even  absorbed 0 is 𝑞𝑚.   

Lemma 8.3 

  Let 0 < ∈ < 1  for  𝑛  sufficiently large   

   𝜌 {𝑅 <  (1−2∈)(𝑚+𝑛) 𝜌 }  <  2 ∈.                  (8.4) 
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Proof  

 Using lemma (8.2) , 𝑅 is greater than the sum of the first (1−∈)(𝑚 + 𝑛)  

terms of {𝑟̃1, 𝑟̃2 , … , 𝑟̃𝑚, 𝑟̃(1), 𝑟̃(2), … … . . , 𝑟̃(𝑛) }   with probability greater then (1−∈) 

for sufficiently larger 𝑛. 

     The sum of the first (1−∈)(𝑚 + 𝑛)  first terms has mean                      (1−∈)(𝑚 + 𝑛) / 𝜌  and variance (1−∈)(𝑚 + 𝑛) / 𝜌² . 

  Lemma 8.4 

      The number of 𝑙𝑖 ’𝑠  which  are greater than (1−∈)(𝑚 + 𝑛) / 𝜌    is binomial  

 (𝑛, 𝑒−(1−2∈)𝑚+𝑛/𝜌)  this distribution has mean  𝑛𝑒−(1−2є)𝑚+𝑛/𝜌  ~ 𝑛 (𝑏𝑛)1−2∈
 

 =  𝑏1−2∈ 𝑛2∈                               (8.5) 

   Proof   

      
    It is easy to see that  𝑋(∞) in 𝑜(1 𝑛⁄ )  in probability. Thus except on a set 

of small probability  𝑅 is greater than the sum of  the first 𝑚 + 𝑛 − 1 𝑛⁄   terms  

of  {𝑟̃1, 𝑟̃2 , … , 𝑟̃𝑚, 𝑟(1), 𝑟(2), … … . . , 𝑟(𝑛) } . 

      𝑅 is of course less than or equal to the sum of all the terms. The probability 

approaching, 
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      𝑚 + 𝑛𝜌 − (𝑚 + 𝑛 )2 3⁄𝜌  <  𝑅 <  𝑚 + 𝑛𝜌 + (𝑚 + 𝑛 )2 3⁄𝜌  

  The number of 𝑙𝑖 ’𝑠 greater than 

                               𝑚 + 𝑛𝜌 ± (𝑚 + 𝑛 )2 3⁄𝜌  

is distributed as a binomial 

                              (𝑛, 𝑒𝑥𝑝 {𝑚 + 𝑛𝜌 − (𝑚 + 𝑛 )2 3⁄𝜌 }) 

 which has mean 

𝑛 𝑒𝑥𝑝 {− 𝑚 + 𝑛𝜌 ∓ (𝑚 + 𝑛 )2 3⁄𝜌 } ~ 𝑏 𝑒𝑥𝑝 {∓ (𝑚 + 𝑛 )2 3⁄𝜌 }  →  𝑏. 
 Thus with probability approaching 1, 𝑋(∞),  is less than 𝑎 

   Binomial (𝑛 , 𝑒𝑥𝑝 {− 𝑚+𝑛𝜌 + (𝑚+𝑛 )2 3⁄𝜌 })  random variables and 

greater than 𝑎  
  Binomial  (𝑛 , 𝑒𝑥𝑝 {− 𝑚+𝑛𝜌 − (𝑚+𝑛 )2 3⁄𝜌 }) random variables. 

Since both of these distribution that converge in law to a Poisson unit mean 𝑏. 
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CHAPTER IX 

REPRODUCTION NUMBERS AND THRESHOLDS IN STOCHASTIC 

EPIDEMIC MODELS HOMOGENEOUS POPULATION 

Introduction: 

Let us compare threshold results for the deterministic and stochastic 

versions of the homogeneous 𝑆𝐼  model with recruitment death due to the 

disease, a background death rate, and transmission rate 𝛽𝑐𝑋𝑌 𝑁⁄ . If an infective 

is introduced into a population of susceptibles, the basic reproduction number, 𝑅0  plays a fundamental role for both, though the threshold results differ 

somewhat. For the deterministic model, no epidemic can occur if 𝑅0 ≤ 1 and an 

epidemic occurs if 𝑅0 > 1 For the stochastic model we find that on average, no 

epidemic will occur if 𝑅0 ≤ 1. If 𝑅0 > 1, there is a finite probability, but less 

than 1 , that an epidemic will develop and eventuate in an endemic quasi-

equilibrium. However, there is also a finite probability of extinction of the 

infection, and the probability of extinction decreases as R, increases above 1 is 

given by [21]. 

The basic reproduction number is defined as follows. Let 𝑐 be the average 

number of persons contacted per person per unit time, and let 𝛽  be the 

probability of transmission per contact between a susceptible and an infected. 

The combined parameter l =  𝑐b  has units 𝑡𝑖𝑚𝑒−1 and is called the number of 
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effective contacts per person per unit time. Let 𝐷 be the mean duration of the 

infectious period. Then the number of contacts effective in transmission per 

infective if all contacts are with susceptible is 𝑅0,  the basic or initial 

reproduction number where 𝑅0 = 𝑐b𝐷. 𝑅0 is a dimonsionless number.  

 If the population is a large population of susceptibles and let us introduce 

one infective who is just beginning the infectious period, 𝑅0 must be greater 

than 1 for an epidemic to take off. 𝑐𝛽𝐷 − 1 > 0. 
 Let us consider the concept of a threshold for epidemic takeoff directly 

related to the basic reproduction number. If 𝑅0 > 1, an epidemic starts; then as 

the fraction of susceptibles decreases the epidemic slows, more so if those 

recover are immune to the disease. If new susceptibles are introduced at a 

constant rate, an endemic steady state can occur when 𝑅 = 𝑅0𝑆 = 1. 

 Here 𝑆 is the fraction of susceptibles in the population. 𝑅 has also been 

called the reproductive number or replacement number. Let 𝑅 changes as the 

fraction of susceptibles changes. 

 In this chapter let us examine the deterministic and stochastic 

formulations for 𝑆𝐼, 𝑆𝐼𝑆, 𝑆𝐼𝑅 and 𝑆𝐼𝑅𝑆 models for homogeneous populations. 
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The Homogeneous SI models 

The Deterministic Model 

 Let 

𝑋, 𝑌 The number of susceptibles and infectives respectively. Both are 

continuous, non negative variables 𝑈 A constant rate of recruitment of new susceptibles into the 

population. 𝜇 The rate constant for competing deaths, assumed to be the same for 

susceptibles and infecteds. Thus, the rate at which susceptibles die 

due to all causes is 𝜇𝑋. 𝑘 The rate constant for deaths due to the disease. 𝑐 The mean number of persons contacted per person unit time. These 

contacts are, by definition, the type of contacts that can potentially 

transmit the disease. 𝛽 The probability of transmission of the disease for a contact of a 

susceptible with an infected. 

The Deterministic Equations:  

 The total number of persons contacted per unit time by all susceptibles is 𝑐𝑋. Assuming that the contacts are randomly distributed over susceptibles and 

infecteds in the population, the fraction 𝑌/(𝑋 +  𝑌 –  1) of these contacts is 

with infecteds. Let us use 𝑌/(𝑋 +  𝑌)  in place of 𝑌/(𝑋 +  𝑌 –  1)  because 𝑋 
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and 𝑌 are continuous variables. It makes little difference for 𝑋 + 𝑌 large, and 

the use of 𝑌/(𝑋 +  𝑌 –  1) leads to difficulties for 𝑋 + 𝑌 ≤ 1. For comparison 

with the stochastic model in which 𝑋 and 𝑌 are counted in integral units, let us 

use  𝑌/(𝑋 +  𝑌 –  1)  in the deterministic model and avoid the region 𝑋 + 𝑌 ≤1. Then, since 𝛽 is the fraction of contacts between susceptibles and infecteds in 

which there is transmission, the rate at which susceptibles are infected must be 

𝑐𝛽 𝑋𝑌𝑋 + 𝑌 − 1 

Thus the differential equations for 𝑋 and 𝑌 are  𝑑𝑋𝑑𝑡 = −𝑐𝛽 𝑋𝑌𝑋 + 𝑌 − 1 − 𝜇𝑋 + 𝑈                                   (9.1) 𝑑𝑌𝑑𝑡 = 𝑐𝛽 𝑋𝑌𝑋 + 𝑌 − 1 − (𝑘 + 𝜇)𝑌                                    (9.2) 
Global Stability and the Basic Reproduction Number   

 Put 𝑋 + 𝑌 for 𝑋 + 𝑌 − 1 in the denominators of the first terms in (9.1) 

and (9.2), Equation (9.2) becomes  𝑑𝑌𝑑𝑡 = 𝑐𝛽 𝑋𝑌𝑋 + 𝑌 − (𝑘 + 𝜇)𝑌                                            (9.3) 
 Then if 

𝑅0 = 𝐶𝛽𝑘+𝜇 < 1                                                            (9.4) 

the disease – free equilibrium is globally stable. That result is obtained directly 

by factoring (9.3) as in 
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𝑑𝑌𝑑𝑡 = [𝑐𝛽 𝑋𝑋 + 𝑌 − 1 − (𝑘 + 𝜇)] 𝑌                                            (9.5) 
and noting that since 𝑋/(𝑋 + 𝑌) < 1  for 𝑌 > 0 , if 𝑐𝛽 − (𝑘 + 𝜇) ≤ 0 , the 

derivative of  𝑌 is always negative except at 𝑌 = 0. 

 The result for Equation (9.2) is slightly different. Factoring (9.2) 

𝑑𝑌𝑑𝑡 = [𝑐𝛽 𝑋𝑋 + 𝑌 − 1 − (𝑘 + 𝜇)] 𝑌                                            (9.6) 
 At the disease – free equilibrium, 𝑋 = 𝑈/𝜇, 𝑌 = 0, and 

𝑋𝑋 + 𝑌 − 1 = 𝜇𝑈 − 𝜇 

 Now, one obtains 

𝑅0 = ( 𝑐𝛽𝑘 + 𝜇) ( 𝑈𝑈 − 𝜇) < 1                                              (9.7) 
as the condition for global stability of the disease – free equilibrium. Usually  𝑈 ≫ 𝜇, so there is little difference between the 𝑅0′𝑠 obtained from (9.4) and 

from (9.7). Let us continue to use the notation 𝑅0 = 𝑐𝛽/(𝑘 + 𝜇)  and point out 

that the first factor in (9.6) gives 𝑅0 when 𝑌 = 1. 

The Stochastic Model 

 [𝑐𝛽𝑥𝑦 (𝑥 + 𝑦 − 1)⁄ ]∆𝑡 is the probability that a susceptible is converted to 

an infected in t. In that transition 𝑥 decreases by 1 and 𝑦 increases by 1.This 
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transition probability is zero if 𝑥 = 0 and 𝑦 = 0. Also if 𝑥 + 𝑦 ≦ 1, there is no 

transmission.  

The Stochastic Equation 

 𝑈D𝑡 is the probability that x increases by 1 in D𝑡, by recruitment.  

 m𝑥D𝑡 is the probability  of losing one susceptible to a competing cause of 

death in D𝑡, 𝑥 decreases by 1. 

 𝜇𝑦D𝑡 is the probability  of losing one infective to a competing cause of 

death in D𝑡, 𝑦 decreases by 1 

 𝑘𝑦D𝑡  is the probability of losing an infective due to the disease in ∆𝑡;  𝑦 

decreases by 1.  

 Define 𝑝𝑥𝑦(𝑡)  as the probability that the population has 𝑥 susceptibles 

and 𝑦  infectives at time 𝑡 . The expression for 𝑝𝑥𝑦(𝑡 + ∆𝑡) , following the 

approach of Bailey [4], to show the derivation of the differential equation for 𝑝𝑥𝑦(𝑡) is 

𝑝𝑥𝑦(𝑡 + ∆𝑡) = 𝑝𝑥+1,𝑦−1 𝑐𝛽(𝑥 + 1)(𝑦 − 1)𝑥 + 𝑦 − 1  ∆𝑡 + 𝑝𝑥,𝑦+1(𝑘 + 𝜇)(𝑦 + 1)𝑡 
                                  +𝑝𝑥−1,𝑦𝑈 ∆𝑡 + 𝑝𝑥+1,𝑦 𝜇 (𝑥 + 1)∆𝑡     

+𝑝𝑥,𝑦1 − 𝑐𝛽𝑥𝑦𝑥 + 𝑦 − 1 ∆𝑡 − (𝑘 + 𝜇)𝑦∆𝑡 − 𝑈∆𝑡 − 𝜇𝑥∆𝑡     (9.8) 
 Rearranging and taking limits gives the differential equation for 𝑝𝑥𝑦, 
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𝑑𝑝𝑑𝑡 = 𝑐𝛽 [(𝑥 + 1)(𝑦 − 1)𝑥 + 𝑦 − 1  𝑝𝑥+1,𝑦−1 − 𝑥𝑦𝑥 + 𝑦 − 1𝑝𝑥,𝑦] + 𝑈[𝑝𝑥−1,𝑦 − 𝑝𝑥𝑦] 
                  +(𝑘 + 𝜇)[(𝑦 + 1)𝑝𝑥,𝑦+1 − 𝑦𝑝𝑥𝑦] + 𝜇[(𝑥 + 1)𝑝𝑥+1,𝑦 − 𝑥𝑝𝑥𝑦]        

(9.9) 

If 𝑖 < 0 and 𝑗 < 0 then 𝑃𝑖𝑗 = 0. 

Initial Conditions. 

 If no infectives are present, the number of susceptibles is given by a 

linear death process with immigration Let us assume that process is at 

equilibrium when the infectives are introduced. At that point                       𝐸(𝑥) = 𝑚𝑥 = 𝑈/𝜇. 

 Let us choose that initially there are 𝑛  susceptibles , where 𝑛  is the 

integer closest to 𝑈/𝜇. To such a population, let us take 𝑚 infecteds. That gives 

for initial conditions, 𝑝𝑛𝑚(0) = 1, 𝑝𝑥𝑦(0) = 0, 𝑥 ≠ 𝑛 𝑜𝑟 𝑦 ≠ 𝑚 

Let us to be most interested in the case 𝑚 = 1. 

The Mean Number of Infecteds 

  Next let us compare the time courses of the mean number of infecteds 

from the stochastic model with the time courses of the number of infecteds from 

the deterministic model. 

 By definition the expected values are given by  
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𝑚𝑦(𝑡) = 𝐸[𝑦] =∑∑𝑦𝑝𝑥𝑦(𝑡)∞
𝑦=0

∞
𝑥=0                                                    (9.10) 

𝑎𝑛𝑑                  𝑚𝑥(𝑡) = 𝐸[𝑥]  

=∑∑𝑥𝑝𝑥𝑦(𝑡)∞
𝑦=0

∞
𝑥=0                                                              (9.11) 

The generating function approach to find equations for  the mean values but 

have failed with it. However, one can generate the differential equations for the 

mean values, 𝑑𝑚𝑥𝑑𝑡 = ∑∑𝑑𝑝𝑥𝑦𝑑𝑡∞
𝑦=0

∞
𝑥=0                                                    (9.12) 

𝑎𝑛𝑑                         𝑑𝑚𝑦𝑑𝑡 =∑∑𝑦 𝑑𝑝𝑥𝑦𝑑𝑡∞
𝑦=0

∞
𝑥=0                                                (9.13) 

 Starting with the system in state (𝑥, 𝑦) let us calculate the expected value 

of 𝑦(𝑡 + D𝑡) − 𝑦(𝑡)  𝐸[𝑦(𝑡 + ∆𝑡) − 𝑦(𝑡)|𝑥, 𝑦] 
= 𝑐𝛽 𝑥𝑦𝑥 + 𝑦 − 1 ∆𝑡 − (𝑘 + 𝜇)𝑦 ∆𝑡 + 𝑜(∆𝑡)          (9.14) 

Taking expected values and using the usual limit process as ∆𝑡 → 0 gives 

𝑑𝐸[𝑦]𝑑𝑡 = 𝐸 [ 𝑐𝛽𝑥𝑦𝑥 + 𝑦 − 1] − 𝐸[(𝑘 + 𝜇)𝑦]                                (9.15) 
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Hence  𝑑𝑚𝑦𝑑𝑡 = 𝑐𝛽∑∑ 𝑥𝑦𝑥 + 𝑦 − 1∞
𝑦=0

∞
𝑥=0 𝑝𝑥𝑦  − (𝑘 + 𝜇)∑∑𝑦∞

𝑦=0
∞
𝑥=0 𝑝𝑥𝑦                         (9.16) 

Similarly  𝑑𝑚𝑥𝑑𝑡 = −𝑐𝛽∑∑ 𝑥𝑦𝑥 + 𝑦 − 1∞
𝑦=0

∞
𝑥=0 𝑝𝑥𝑦  − 𝜇∑∑𝑥∞

𝑦=0
∞
𝑥=0 𝑝𝑥𝑦 + 𝑈                        (9.17) 

 Equations (9.16) and (9.17) can also be obtained directly by substituting 

(9.9) into (9.12) and (9.13), though with somewhat more effort. 

Relations between Stochastic means and deterministic variables:  

1.Reproduction number and Global stability : 𝑹𝟎 < 1 

𝑑𝑚𝑦𝑑𝑡 = (𝑘 + 𝜇) [∑∑ 𝛽𝑐𝑘 + 𝜇  𝑥𝑦𝑥 + 𝑦 − 1∞
𝑦=0

∞
𝑥=0 𝑝𝑥𝑦  − 1] 𝑦𝑝𝑥𝑦                         (9.18) 

 Assume that 𝑅0 − 1 = [𝛽𝑐/(𝑘 + 𝜇) − 1] < 0. The initial value, 𝑚𝑦(0), 
is finite. To show that the derivative of 𝑚𝑦(𝑡) is negative for all 𝑡 < ∞ and that 

its asymptotic steady value is zero. 

 The derivative of 𝑚𝑦  is always negative. Consider Equation (9.18) for  𝑡 ≥ 0 . All terms for which 𝑦 = 0  are equal to zero, so in the summations 

consider the terms in 𝑦 for 𝑦 ≥ 1. For all 𝑦 ≥ 1 and all 𝑥 > 0, 
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𝑥𝑥 + 𝑦 − 1 ≤ 1                                                           (9.19) 
and the equality sign holds only when 𝑦 = 1 and 𝑥 ≠ 0. Hence, if 𝑅0 − 1 < 0, 

all coefficients of 𝑦𝑝𝑥𝑦  in (9.18) must be negative for 𝑦 ≥ 1. Therefore the 

derivative of 𝑚𝑦 is always negative and 𝑚𝑦 must always decrease. 

The Equilibrium State Value of  𝒎𝒚 is Zero.  

 The equilibrium state solution for Equation (9.16), 𝑚𝑦𝑒  for which 𝑑𝑚𝑦𝑑𝑡 = 0                                                                       (9.20) 
when 𝑅0 < 1. For the equilibrium state, Equation (9.18) can be written us 

𝑅0∑∑  𝑥𝑦𝑥 + 𝑦 − 1∞
𝑦=0

∞
𝑥=0 𝑝𝑥𝑦 =∑∑𝑦∞

𝑦=0
∞
𝑥=0 𝑝𝑥𝑦 = 𝑚𝑦𝑒                                     (9.21) 

The double sum on the left-hand side may be written 

∑∑  𝜉𝑥𝑦∞
𝑦=1

∞
𝑥=0 𝑦𝑝𝑥𝑦                                                                          (9.22) 

where 0 ≤   𝜉𝑥𝑦 ≤ 1                                                                       (9.23) 

Hence there exists 𝜉𝑒 , 0 ≤ 𝜉𝑒 ≤ 1, such that 

∑∑𝜉𝑥𝑦∞
𝑦=0 𝑦∞

𝑥=0 𝑝𝑥𝑦 = 𝜉𝑒∑∑𝑦∞
𝑦=1

∞
𝑥=0 𝑝𝑥𝑦                                                          (9.24) 

Thus, equation (9.21) becomes 
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(𝑅0𝜉𝑒 − 1)𝑚𝑦𝑒 = 0                                                                      (9.25) 
By hypothesis, 𝑅0 < 1 , so the first factor in (9.25) cannot be zero. Hence,   𝑚𝑦𝑒 = 0. 

 If 𝑅0 − 1 < 0, the equilibrium state for Equation (9.16) has for solution 𝑚𝑦𝑒 = 0 and the derivative of 𝑚𝑦 is always negative. Since 𝑦 is a nonnegative 

variable, if its expected value goes to zero, all probabilities   𝑝𝑥𝑦 for 𝑦 > 0 must 

go to zero, and hence all higher moments must also go to zero. Hence, the 

disease – free equilibrium is globally stable for the stochastic model.  

Case i: 𝑹𝟎 = 𝟏 

 For 𝑥 = 0, 𝜉𝑥𝑦 = 0 , and for 𝑦 = 1, 𝜉𝑥𝑦 = 1 ; for  all other 𝑥  and 𝑦 , 0 <  𝜉𝑥𝑦 < 1. Hence, some of the coefficients in (9.18) are  negative and others 

are zero. And, except for the unusual circumstance  𝑝𝑥𝑦(𝑡) = 0 for 𝑦 ≠ 1, there 

exists 𝜉𝑒 , 0 ≤ 𝜉𝑒 < 1, such that (9.24) holds, so that the conclusion 𝑚𝑦𝑒 = 0 

still holds. 

The Equilibrium State Value of  𝑚𝑥 . From (9.17), at the steady state let us 

obtain 

𝑐𝛽𝜉𝑒𝑚𝑦𝑒 + 𝜆𝑚𝑥𝑒 = 𝑈                                                    (9.26) 

For 𝑅0 < 1,𝑚𝑦𝑒 = 0, so 

𝑚𝑥𝑒 = 𝑈/𝜇                                             (9.27) 
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2. Initial Time Course of  the Epidemic 

 In previous case 𝑦 ≪ 𝑥, 𝑝𝑥𝑦 will be negligible for large 𝑦. Then, for all 

terms in (9.16) for which 𝑝𝑥𝑦 is significant, 

𝑥𝑥 + 𝑦 − 1 = 1                                                                 (9.28) 
Under that constraint, Equation (9.16) reduces to 

𝑑𝑚𝑦𝑑𝑡 = [𝛽𝑐 − (𝑘 + 𝜇)]∑∑𝑦∞
𝑦=0

∞
𝑥=0 𝑝𝑥𝑦 = [𝛽𝑐 − (𝑘 + 𝜇)   ]𝑚𝑦                (9.29) 

 Initially, 𝑚𝑦 grows or decays exponentially; it grows if 𝑅0 > 1 , it 

decreases if 𝑅0 < 1, and it is stationary for a time if 𝑅0 = 1. The  relation (9.28) 

is satisfied. The larger the initial size of the population, the longer relation 

(9.29) will be valid.  

 With the approximation of (9.28) and (9.29), the epidemic becomes a            

birth – and – death process. For the general epidemic, the birth – and – death 

approximation holds until about 𝑛1 2⁄  of the susceptibles become infected. For is 

model in which the size of the population decreases as the epidemic spreads. 
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3. Endemic Equilibrium State: 𝑹𝟎 > 1 

 In Equation (9.24), let us define a mean value 𝜉, 0 < 𝜉(𝑡) < 1 , as in 

(9.30) and explicitly show its dependence on 𝑡. 
𝜉(𝑡) = ∑ ∑ [𝑥/(𝑥 + 𝑦 − 1)] 𝑦𝑝𝑥𝑦𝑦=1𝑥=0  ∑ ∑  𝑦𝑝𝑥𝑦𝑦=1𝑥=0                                       (9.30) 

𝜉(𝑡) is a weighted average of  𝑥/(𝑥 +  𝑦 −  1) with weights 𝑦𝑝𝑥𝑦(𝑡). Using 

(9.30), rewrite (9.16) and (9.17) as in 𝑑𝑚𝑦𝑑𝑡 = (𝑘 + 𝜇)[𝑅0𝜉(𝑡) − 1]𝑚𝑦                                                    (9.31) 
and 

𝑑𝑚𝑥𝑑𝑡 = −𝑐𝛽𝜉(𝑡)𝑚𝑦 − 𝜇𝑚𝑥 + 𝑈                                                    (9.32) 
At the equilibrium state, 

(𝑅0𝜉𝑒 − 1)𝑚𝑦𝑒 = 0                                                                      (9.33) 
and 

𝑚𝑥𝑒 = 𝑈 − (𝑘 + 𝜇)𝑅0𝜉𝑒𝑚𝑦𝑒𝜇                                                       (9.34) 
With 𝑅0 > 1, Equation (9.33) can in general have two solutions, but now 𝑚𝑦𝑒 ≠ 0. 
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Let us note that Equation (9.31) has a solution for 
𝑑𝑚𝑦𝑑𝑡  at which 

𝑑𝑚𝑥𝑑𝑡 ≠ 0. 

𝜉𝑒 = 1 𝑅0⁄                                                                    (9.35) 

𝑚𝑥𝑒 = 𝑈 − (𝑘 + 𝜇)𝑚𝑦𝑒𝜇                                                       (9.36) 
These can be compared with results on the deterministic system, 

𝑋𝑠𝑋𝑠 + 𝑌𝑠 = 1𝑅0                                                                              (9.37) 
𝑋𝑠 = 𝑈 − (𝑘 + 𝜇)𝑌𝑠𝜇                                                       (9.38) 

Avian Influenza 

 

 Let us present a highly pathogenic Avian influenza epidemic model with 

saturated contact rate. According to study of the dynamics, we calculated the 

basic reproduction number of the model. Through the analysis of this model, we 

have the following conclusion: if 𝑅0 ≤  1 , there is only one disease-free 

equilibrium which is globally stable, the disease will die; if 𝑅0 >  1, there is 

only one endemic equilibrium which is globally stable, disease will be popular. 

Avian influenza virus belongs to the influenza A virus. According to the 

difference of the pathogenic Avian influenza virus in chicken and turkey, we 

divided it into three levels: high, medium, low/non pathogenic. Because of the 

bird flu virus hemagglutinin structure characteristics, general infected birds, 
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when the virus genetic reassortment during replication, causing structural 

changes. The Avian influenza virus which acquires the ability to infect people, 

can make adult infect the Avian influenza disease. The highly pathogenic Avian 

influenza has a high death rate, which is about 100 percent for birds and more 

than 70 percent for humans. 

At present, some authors have researched some Avian influenza model, 

they had constructed a mathematical model which interprets the spread of Avian 

influenza from the bird world to the human world. Literature  has introduced a 

piecewise treatment function. When the number of the infective had not 

exceeded the maximum treatment capacity, the treatment rate was proportional 

to the number of the infective. When the number of the infective had exceeded 

the maximum treatment capacity, it took maximum saturation treatment value. 

Literature have studied of SIR model with saturated treatment rate. In the 

literature, the saturated treatment rate is 
𝑟𝐼1+𝛼𝐼, where 𝑟 is the cure rate and 𝛼 is 

the parameters of infection which is due to delayed treatment. The conclusion 

had indicated that in the prevention and treatment of Avian flu drugs under the 

condition of limited, culling of infected poultry was the most effective way to 

control the spread of Avian flu in humans 

Avian influenza model with saturated contact rate is given by, 
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{  
  
   
 𝑋′ = 𝑐 − 𝜔𝑋𝑌1 + 𝛿𝑌 − 𝑑𝑋,        𝑌′ = 𝜔𝑋𝑌1 + 𝛿𝑌 − (𝑑 +𝑚)𝑌     𝑆′ = 𝑏 − 𝛽𝑆𝑌1 + 𝛿𝑌 − 𝛼𝑆            𝐼′ = 𝛽𝑆𝑌1 + 𝛿𝑌 − (𝜀 + 𝛼 + 𝛾)𝐼𝑅′ = 𝛾𝐼 − 𝛼𝑅                            

                                        (9.39) 

In system (9.39), the human is divided into three compartments: 

Susceptible (S), infected (I), recovery (R). The birds are divided into susceptible 

poultry (X) and infected poultry (Y). The parameters c and b are respectively the 

natural birth rate of Avian and human. d and α are respectively the natural 

mortality of poultry and human. m and ε are respectively the poultry and human 

mortality due to illness. ω stands for infectious rate of susceptible poultry to 

infected poultry. β stands for infected poultry of the infection rate of susceptible 

individuals. 

γ is the recovery rate that infects individuals through treatment. When Y is 

small, the contact ratio, infected poultry and susceptible poultry, is  

approximatively proportional to the Y; With the increase of Y, the contact rate 

gradually reaches saturation. When Y is very large, it is close to a constant 
𝜔𝛿 . 

The same way to explain 
𝛽1+𝛿𝑌, that is to say, δ is a parameter, which is effects 

of infectious diseases, when the contact rate of the disease is saturated. 
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The Existence of the Equilibrium Point 

Let  us study the following system: 

{  
  
   
 𝑋′ = 𝑐 − 𝜔𝑋𝑌1 + 𝛿𝑌 − 𝑑𝑋,        𝑌′ = 𝜔𝑋𝑌1 + 𝛿𝑌 − (𝑑 +𝑚)𝑌     𝑆′ = 𝑏 − 𝛽𝑆𝑌1 + 𝛿𝑌 − 𝛼𝑆            𝐼′ = 𝛽𝑆𝑌1 + 𝛿𝑌 − (𝜀 + 𝛼 + 𝛾)𝐼

                                        (9.40) 

Let us get the basic reproductive number of the system (9.40)                       𝐸0 = (𝑋0, 𝑌0, 𝑆0, 𝐼0) is (𝑐𝑑 , 0, 𝑏𝛼 , 0) 

 

By the positive of the endemic equilibrium point, we can get that if 𝑅0 > 1, there is a unique endemic equilibrium 𝐸+ = (𝑋∗, 𝑌∗, 𝑆∗, 𝐼∗),  
 which satisfied: 

 

So, we can get the following theorem: 

Theorem 9.1 

The Jacobian matrix of system (9.39) is 
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which in the disease-free equilibrium 𝐸0, is 

 

The characteristic equation of the Jacobian matrix 𝐽𝐸0 is (𝜆 +  𝑑 )(𝜆 −  ℎ)(𝜆 + 𝛼 )(𝜆 + 𝜀 + 𝛼 + 𝛾 )  =  0. 
Here, ℎ = 𝑐𝜔𝑑 − (𝑑 +𝑚) = (𝑑 +𝑚)(𝑅0 −  1), 𝜆  denotes the 

indeterminate of the polynomial. If and only if 𝑅0 ≤  1   all roots of this 

characteristic equation have negative real parts. It implies that 𝐸0  is locally 

asymptotically stable. 
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Theorem 9.2 

If R0 ≤  1 , the disease – free equilibrium E0  is locally asymptotically 

stable; if R0 >  1, the disease – free equilibrium E0 is unstable. 

Let us discuss the global stability of E0 , considering the Liapunov 

function  

 

 

when 𝑅0 ≤  1 , we can get 𝑊 ′ ≤  1, and  𝑊 ′ = 0 has no other closed 

trajectory in addition to 𝐸0. 

The SIS and SIR Stochastic Epidemic Models 

Let us analyze the dynamics of infectious disease spread by formulating 

the maximum entropy (ME) solutions of the susceptible-infected-susceptible 

(SIS) and the susceptible-infected-removed (SIR) stochastic models. Several 
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scenarios providing helpful insight into the use of the ME formalism for 

epidemic modeling are identified. The ME results are illustrated with respect to 

several descriptors, including the number of recovered individuals and the time 

to extinction. 

Maximum entropy background 

In this chapter, let us summarize the ME formalism. Although it is not 

generally possible to obtain closed-form solutions for the ME distributions, 

methods for numerical computation are available. Let us consider a random 

characteristic,  , of a stochastic system 𝑋.  

For example, 𝜉 can denote the time until the end of the epidemic process 𝑋. The general theory is common for both the discrete and continuous cases. Let 

us denote by 𝑓(𝑥)  the corresponding probability mass function or density 

function associated with the system characteristic  . Let us assume that 𝑓(𝑥) 
takes values in a state space 𝑋, so  the normalization constraint becomes 

∫ 𝑓(𝜒)𝑑𝜒 = 1𝜒                                                     (9.41) 
Of course, the integral in (9.41) reduces to a finite or infinite sum when 𝜉 is a 

discrete random variable. 

Suppose that one is faced with the problem of determining a probability 

distribution consistent with a given set of mean value constraints which provide 
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the available information about 𝜉 . It is assumed that the known information 

about 𝑓(𝑥) takes the form of 𝑚̅ equality constraints 

∫ 𝐹𝑘(𝜒)𝑓(𝜒)𝑑𝜒 = 𝐹𝑘𝜒               (9.42) 
for a known set of functions 𝐹𝑘(𝑥) and numbers 𝐹𝑘, for 1 ≤ 𝑘 ≤ 𝑚. 

The structural form of the mean value constraints ( ) covers important 

special cases such as: 

(i) 𝐹𝑘(𝑥) = 𝑥𝑘 (𝑘th moment). 

(ii) 𝐹𝑘(𝑥)  =  𝐼(−∞, 𝑥𝑘](𝑥) (value of the distribution function at the point 𝑥𝑘). 

(iii) 𝐹𝑘(𝑥)  =  𝑒−𝑆𝑘𝑥  (value of the Laplace–Stieltjes transform or the moment  

   generating function at the point sk). 

Now, because the constraints (9.41) and (9.42) do not determine 𝑓(𝑥) 
completely, the inference problem is how to estimate 𝑓(𝑥)  among all the 

probability distributions that satisfy the constraints. The PME states that, of all 

the probability density functions satisfying the mean value constraints (9.41) 

and (9.42), the minimally prejudiced density (i.e., the density function that 

introduces the minimum extraneous information) is the one that maximizes the 

Shannon’s entropy functional 

𝑆(𝑓) = −∫ 𝑓(𝜒)𝐼𝑛 𝑓(𝜒) 𝑑𝜒𝜒                                    (9.43) 
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The PME admits a natural generalization that applies to cases when a 

prior density 𝑔(𝑥) that estimates 𝑓(𝑥) is known in addition to the constraints 

(9.41) and (9.42). Then, the principle of minimum cross-entropy generalizes the 

PME by stating that, of all the densities that satisfy the mean constraints, the 

minimum cross entropy solution is chosen by minimizing the functional 

 

When state space 𝑋 is a discrete finite set, the PME can be  viewed as a 

special case of cross-entropy minimization when the prior density 𝑔(𝑥) in (4) is 

uniformly distributed on 𝑋 . The knowledge of a prior density 𝑔(𝑥)  is not 

assumed in this paper so in what follows we reduce to the optimization of the 

Shannon’s entropy 𝑆(𝑓). For a Bayesian analysis of the SIR epidemic model 

with prior parameter distributions of Gamma type. The maximization of 𝑆(𝑓) 
can be carried out with the help of Lagrange’s method of undetermined 

multipliers. If there exists a density function that maximizes the entropy (9.43) 

and satisfies the mean value constraints (9.41) and (9.42), then it has the 

following form 

 

where 𝛼̂𝑘 are the Lagrangian multipliers. Now, the normalization condition 

(9.41) implies that 𝛼̂0 is given by 



134 

 

 

The rest of the Lagrangian multipliers satisfy that 

 

Unfortunately, it is usually impossible to solve Eqs. (9.44) for 𝛼̂𝑘 

explicitly. As an exception we mention the special case where                      𝑚̅ = 1, 𝑋 = (0,+∞) and 𝐹1(𝑥) = 𝑥 . Then, the explicit ME – solution is the 

exponential density 

 

Suppose that the second moment is added as a new constraint. Now, it is 

impossible to get an explicit solution for the pair (𝛼̂1, 𝛼̂2). Therefore, numerical 

methods of the solution become important. By combining (9.41) and (9.42) the 

problem of determining the optimal 𝛼̂𝑘, for 1 ≤ 𝑘 ≤ 𝑚̅, is reduced to solve the 

following system of implicit and nonlinear equations: 

 

In fact, the solution of (9.45) amounts to minimizing the following 

convex potential function 

 

(9.44) 

(9.45) 
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or, alternatively, the balanced function 

 

where the weights 𝑝𝑖 are positive and ∑ 𝑝𝑖 = 1𝑚̅𝑖=1 . 

Some basic stochastic epidemic models 

The stochastic SIS epidemic model 

In the stochastic SIS epidemic model there is a closed population of size 𝑁, where each individual is classified as either a susceptible  or an infective. Let 𝑆(𝑡) and 𝐼(𝑡) be the number of susceptible and infectives, respectively, at time 𝑡. Since 𝑆(𝑡) + 𝐼(𝑡)  =  𝑁, the evolution of the epidemic is simply described by 

the process {𝐼(𝑡);  𝑡 ≥  0} with state space 𝑆 =  {0, . . . , 𝑁}. The infection ends 

when 𝐼(𝑡)  =  0. The SIS model assumes that a recovered individual does not 

acquire immunity but immediately becomes susceptible. Thus, the process {𝐼(𝑡);  𝑡 ≥  0}  is usually modeled as a particular case of a birth-and-death 

process with an absorbing state 0 and a reflecting state N. The birth and death 

rates are 

 

where 𝛽 is the effective contact rate and 𝛾 is the individual recovery rate. 
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Since the state space is finite, extinction is certain. Roughly speaking, the 

parameter region where the time to extinction is short can be identified by small 

values of the reproduction ratio 𝑅0 = 𝛽/𝛾 . In contrast, if 𝑅0 is large, then the 

epidemic tends to persist for a very long time, so a state of quasi – stationary 

equilibrium may be reached before a random fluctuation leads to the extinction 

of the epidemic. 

Many variants and generalizations of the SIS model have been 

considered. For example, a more general model is the Verhulst model with 

infection rates 𝜆 𝑖 = 𝛽𝑖(1 − (𝛼1𝑖/𝑁)) , for 0 ≤ 𝑖 ≤ 𝑁 − 1, 𝜆𝑁 = 0 , and 

recovery rates 𝜇𝑖 =  𝛾𝑖(1 + (𝛼2𝑖/𝑁)),  for 0 ≤ 𝑖 ≤ 𝑁.  The SIS model 

corresponds with the particular case where 𝛼1 = 1 and 𝛼2 = 0. 

The stochastic SIR epidemic model 

Let us deal with the stochastic SIR epidemic model. In the SIR model, 

infected individuals remain infectious for a random time, but they recover and 

become immune. Thus, at time 𝑡, the population consists of  𝐼(𝑡) infectives, 𝑆(𝑡) susceptibles and 𝑅(𝑡)  =  𝑁 −  𝐼(𝑡)  −  𝑆(𝑡) immune individuals, where 𝑁 

is the constant population size. Let us assume the initial condition (𝐼(0), 𝑆(0), 𝑅(0))  =  (𝑚, 𝑛, 0), so 𝑁 = 𝑚 +  𝑛. When in state (𝑖, 𝑗), for 𝑖 ≥ 1, 

the population state moves either to (𝑖 +  1, 𝑗 −  1) due  to an infection, or to (𝑖 −  1, 𝑗) due to the removal of an infective. In the states (𝑖, 0), for 𝑖 ≥  1, 

only a removal can occur. The state space of the SIR epidemic model is 
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𝑆 =  {(𝑖, 𝑗);  0 ≤  𝑖 ≤  𝑚 +  𝑛, 0 ≤ 𝑗 ≤  𝑚𝑖𝑛{𝑛,𝑚 +  𝑛 −  𝑖}}. Let us notice 

that states {(0, 𝑗);  0 ≤  𝑗 ≤  𝑛}  are absorbing states, so it is reasonable to 

assume that 𝑚 ≥  1. 

Let us assuming the exponential distribution and the independence of the 

involved random events (i.e., contact periods, recovery times), the process {(𝐼(𝑡), 𝑆(𝑡));  𝑡 ≥  0} results to be a bidimensional CTMC with infection rates 𝜆𝑖𝑗 and removal rates 𝜇𝑖. A typical choice for the transition rates is 

 

        

where 𝛽 and 𝛾 denote the contact and the recovery rates. A more general model 

assumes that  infected individuals remain infectious for a random period  𝐼. 
These infectious periods are mutually independent and also independent of the 

contact process. let 𝑁𝑚𝑛′ be the number of individuals infected prior to disease 

extinction (excluding the initial number 𝑚). In other words, 𝑁𝑚𝑛′  amounts to the 

final size of the epidemics. The distribution of  𝑁𝑚𝑛′  can be computed from the 

recursive formula 
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where 𝜑(𝑠)  =  𝐸[𝑒−𝑠𝐼 ] denotes the Laplace transform of the infectious period 

distribution and 𝛿𝑎𝑏 is Kronecker’s function defined by 1, when 𝑎 = 𝑏, and it 

equals 0, otherwise. 

Global Stability Analysis of a Delayed Susceptible–Infected–Susceptible 

Epidemic Model 

Let 𝑆(𝑡) and 𝐼(𝑡) be the density of susceptible and infected population at 

time 𝑡, respectively.Let us consider the following delayed 𝑆𝐼𝑆 model: 

   

 

(9.47) 

where b > 0 denotes a constant birth rate, β > 0 is the disease transmission rate, 𝜇𝑆 > 0  and 𝜇𝐼 > 0  stand for the death rates of susceptible and infected 

individuals, respectively. 𝑝(𝜏 ) ≥ 0  with 𝜏 ∈ [0,∞)  is the probability density 

function of transmission delay,  𝜇 ≥  0 corresponds to the death rate during 

latent period, 𝛾 ≥ 0 is the recovery rate of infected individuals, and 𝑞 ∈ [0, 1] 
denotes the probability of immunity lost. 

The SIS model (9.46)–(9.47) always admits a disease-free equilibrium (𝑆0, 0) with 𝑆0 ∶=  𝑏/𝜇𝑆 . Define the basic reproductive ratio 

                              

 

(9.46) 
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Where 

 

If 𝑅0 > 1, the model possesses a unique endemic equilibrium (𝑆∗, 𝐼∗), 
where 

    

 

Since 𝛽(𝜇𝐼 +  𝛾 )  −  𝑞𝛽1𝛾 >  𝛽𝛾 −  𝑞𝛽1𝛾 ≥ 0 , it is readily seen that 𝐼∗ > 0 if and only if 𝑅0 > 1. 

Results 9.3 

 Let us assume that the probability density function 𝑝(𝜏 ) satisfies 

 

for some 𝜆 >  0. The suitable state space for our system (9.46)–(9.47) is the 

Banach space 𝑋  which consists of all continuous functions                         (𝑥1, 𝑥2)  ∈  𝐶((−∞, 0], ℝ2) such that 𝑥1(𝜃) 𝑒𝜆𝜃  and  𝑥2(𝜃)𝑒𝜆𝜃  are uniformly 

continuous for 𝜃 ∈ (−∞, 0], and that  

 

Here, ‖. ‖𝑋 denotes the weighted norm of 𝑋. For a function 𝜑 ∈ 𝐶((−∞, 𝑡], ℝ),  
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Let us  denote 𝜑𝑡 ∈ 𝐶((−∞, 0], ℝ)  such that 𝜑𝑡(𝜃) ∶=  𝜑(𝑡 +𝜃) 𝑓𝑜𝑟 𝜃 ∈ (−∞, 0]. It follows from the standard theory of well – posedness 

for functional differential equations [ ] that given any initial conditions 𝑥0 = (𝑥01, 𝑥02) ∈ 𝑋, 

 the system (9.46 )–(9.47 ) has a unique solution 𝑥𝑡 = (𝑥𝑡1, 𝑥𝑡2) ∈ 𝑋  for any 𝑡 > 0. 

Proposition 9.4 

Given the initial values such that 𝑆(𝑡)  ≥  0 and 𝐼(𝑡)  ≥  0 for all 𝑡 ≤  0, 

we have  𝑆(𝑡)  >  0 and 𝐼(𝑡)  ≥  0 for all 𝑡 >  0. If, in addition, 𝑆(𝑡)𝐼(𝑡)  >  0 

for all 𝑡 ≤  0, then 𝐼(𝑡)  >  0 for all 𝑡 ≥  0. 
Proof  

First, let us claim that 𝑆(𝑡) and 𝐼(𝑡) are non – negative for all 𝑡 > 0. If, in 

contrary, there exists a 𝑡0  ≥  0 such that (𝑆(𝑡), 𝐼(𝑡)) leaves the first quadrant at 

the first time, we have either (i) 𝑆(𝑡0) = 0 and 𝑆′(𝑡0) < 0; or (ii) 𝐼(𝑡0) = 0  

and 𝐼′(𝑡0) < 0. Moreover, 𝑆(𝑡)  ≥  0 and 𝐼(𝑡)  ≥  0 for all 𝑡 ≤  𝑡0. 

 We have to show that 𝑆(𝑡)  is strictly positive for all 𝑡 > 0 . Assume 𝑆(𝑡1) = 0 for some 𝑡1 > 0. Since 𝑆(𝑡) ≥ 0 for all 𝑡, it follows that 𝑡 = 𝑡1 is a 

critical point of 𝑆(𝑡)  and thus 𝑆′(𝑡0) = 0 . On the other hand, obtain from         

(9.47 ) that 𝑆′(𝑡1) =  𝑏 +  𝑞𝛾𝐼(𝑡1) ≥  𝑏 > 0, a contradiction. 

Finally, if, in addition, 𝑆(𝑡)𝐼(𝑡) > 0  for all 𝑡 ≤ 0 , let us  prove by 

contradiction that 𝐼(𝑡) > 0 for all 𝑡 > 0. Assume 𝑡2 is the first time when 𝐼(𝑡) 
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losses its positiveness, let us have 𝐼(𝑡2) = 𝐼′(𝑡2) = 0 and 𝐼(𝑡) > 0  for all 𝑡 < 𝑡2, which again contradict Equation. 

Theorem 9.5 

 If 𝑅0 ≤  1, then the disease-free equilibrium (𝑆0, 0) of ()–() is globally 

asymptotically stable; if  𝑅0 >  1, then the endemic equilibrium (𝑆∗, 𝐼∗) of ()–() 

is globally asymptotically  stable. 

Proof  

If  𝑅0 ≤  1, let us construct the Lyapunov functional 𝑈 ∶  𝑋 →  ℝ as 

 

Restricting U along a solution (𝑆, 𝐼) of the system ( )–(), let us have 

 

Let us use the equalities 𝑥1(𝜃) = 𝑆(𝑡 + 𝜃)  and 𝑥2(𝜃) = 𝑆(𝐼 + 𝜃)  for              𝜃 ≤ 0 , and a linear shift 𝑡 + 𝜃 → 𝜃  in the integral representation. Taking 

derivative with respect to 𝑡, Let us have the from Equation () 

 

Making use of the identity 𝑏 =  𝜇𝑆𝑆0 yields 
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Thus, 

 

In view of Equation ( ) and the definition of 𝛽1, let us obtain 

 

Since 𝑅0 ≤  1, let us have 𝛽1𝑆0 ≤ 𝜇𝐼 + 𝛾 and consequently, 𝑈′(𝑡) ≤ 0. 

The largest invariant set of  𝑈′(𝑡) =  0 is a singleton such that 𝑆(𝑡) ≡ 𝑆0 and 𝐼(𝑡)  ≡  0. The trivial equilibrium (𝑆0, 0) is globally asymptotically stable if 𝑅0 ≤  1. 

For the case 𝑅0 >  1 , let us construct the Lyapunov functional                     𝑉 ∶ 𝑋 →  ℝ as  

 

where 

  

 

 

Restricting along a solution (𝑆, 𝐼) of the system ()–(), we can rewrite 𝑉 as 
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Where  

 

 

 

In view of  𝑏 −  𝛽𝑆∗𝐼∗  −  𝜇𝑆𝑆∗  +  𝑞𝛾 𝐼∗ =  0, let us have 

 

Therefore, 

 

On the other hand, since 𝜇𝐼 +  𝛾 = 𝛽1𝑆∗, let us obtain from the definition 

of 𝛽1 that 

 

Combining the above formulas and using the definition of 𝛽1, let us have 
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where 

 

Simplifying the above equation gives 

 

Note that 2 −  𝑎 −  𝑏 +  𝑙𝑛(𝑎𝑏) ≤ 0 for any 𝑎 > 0 and 𝑏 > 0; and the 

equality is satisfied if and only if 𝑎 = 𝑏 = 1. Let us obtain 𝑊(𝑡, 𝜏) ≤ 0 and 

consequently, 𝑉′(𝑡) ≤ 0. Moreover, the largest invariant set of 𝑉′(𝑡) =  0 is a 

singleton where 𝑆(𝑡)  ≡  𝑆∗𝑎𝑛𝑑 𝐼(𝑡)  ≡  𝐼∗ . By the Lyapunov–LaSalle 

invariance principle let us obtain global asymptotic stability of the endemic 

equilibrium (𝑆∗, 𝐼∗) under the condition 𝑅0 > 1. 
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CHAPTER X 

APPLICATION OF MARTINGALE THEORY TO SOME EPIDEMIC 

MODELS I 

 Picard [29] gives some very simple applications of martingales to 

epidemics. The results are all connected with stopping times T and include the 

expression of the joint generating function Laplace transform of  𝑋𝑇 , ∫ 𝑋𝑢𝑇0 , 𝑌𝑢𝑑𝑢  and  ∫ 𝑌𝑢𝑇0 𝑑𝑢  and simple relations between moments of these 

three variables. Several relations between different types of epidemics are 

derived at the end. 

Stopping Time 

 Let (Ω, ℱ, 𝑃)  be a prsobability space and  [ℱ𝑛, 𝑛 ≥ 1]  an increasing 

sequence of  sub 𝜎 – algebras of  (ie) ℱ1 ⊂ ℱ2 ⊂ ⋯… ⊂ ℱ  . A measurable 

function 𝑇 = 𝑇(𝑤) taking values 1,2,…….. is called a stopping time relative to {ℱ𝑛}  if {𝑇 = 𝑗} ∈ ℱ𝑗 , j = 1,2,…….. 

Downstons Classical Model 

Let us consider Downton’s classical model (ie) a time homogeneous two 

type birth and death process (𝑋𝑡 , 𝑌𝑡), 𝑡 > 0 such that                                             

𝑃 [𝑋𝑡+△𝑡 = 𝑟, 𝑌𝑡+△𝑡 = 𝑠 𝑋𝑡⁄ = 𝑖, 𝑌𝑡 = 𝑗] 
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= {  
  𝛼𝜋𝑖𝑗∆𝑡 + 𝑜(∆𝑡)    𝑖𝑓 𝑟 = 𝑖 − 1, 𝑠 = 𝑗 + 1𝛼(1 − 𝜋)𝑖𝑗∆𝑡 + 𝑜(∆𝑡) 𝑖𝑓 𝑟 = 𝑖 − 1, 𝑠 = 𝑗1 − ( 𝛽𝑗∆𝑡 + 𝑜(∆𝑡)𝛼𝑖 + 𝛽)∆𝑡 + 𝑜(∆𝑡)𝑜(∆𝑡) 𝑖𝑓 𝑟 = 𝑖, 𝑠 = 𝑗 − 1𝑖𝑓 𝑟 = 𝑖, 𝑠 = 𝑗𝑖𝑛 𝑎𝑙𝑙  𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠  

Where 𝛼 > 0, 𝛽 > 0,0 ≤ 𝜋 ≤ 1 are parameters and 𝑥0, 𝑦0 the initial data. 

(𝑋𝑡 , 𝑌𝑡), 𝑡 ≥ 0 will have its values in 

𝐷 = {(𝑖, 𝑗) ∈ 𝑁2 0⁄ ≤ 1 + 𝑗 ≤ 𝑥0 + 𝑦0} 
Where 

 𝑋𝑡 −  the number of susceptibles at time t and 

 𝑌𝑡 −  the number of carriers at the same time. 

Any susceptible may be removed or changed into carrier while a carrier may be 

removed only.   

Theorem 10.1 

 ℱ𝑡 is the 𝜎 field generated by 𝑋𝑢, 𝑌𝑢 for 0 ≤ 𝑢 ≤ 𝑡.  
Put   𝑉𝑡 = 𝑎(𝑋𝑡 , 𝑌𝑡)𝑒−𝑍𝑡. 
𝑍𝑡 = ∫ ℎ(𝑋𝑢, 𝑌𝑢)𝑑𝑢𝑡𝑜   where a and h are functions of D into R then prove that (𝑉𝑛, ℱ𝑡), 𝑡 ≥ 0 is a martingale. 
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Proof 

To prove that 

(i) 𝐸{|𝑎(𝑋𝑡 , 𝑌𝑡)𝑒−𝑍𝑡|} < +∞ 

(ii) 𝐸{𝑎(𝑋𝑡 , 𝑌𝑡)𝑒−𝑍𝑡 ℱ𝑡0⁄ } = 𝑎(𝑋𝑡0 , 𝑌𝑡0)𝑒−𝑍𝑡0 ,    0 ≤ 𝑡0 ≤ 𝑡 
Since 0 ≤ 𝑎(𝑋𝑡 , 𝑌𝑡) < max  𝑎(𝑖, 𝑗) 
Therefore (𝑋𝑡 , 𝑌𝑡) will have its values in D. 

Therefore (i) is true. 

To prove (ii) 

Let us take 𝑚(𝑡) = 𝐸𝑡0(𝑎(𝑋𝑡 , 𝑌𝑡)𝑒−𝑍𝑡),    0 ≤ 𝑡0 ≤ 𝑡 
Where 𝐸𝑡0 = 𝐸(…… ℱ𝑛⁄ ).  
For  ∆𝑡 > 0, 

𝑚(𝑡 + ∆𝑡) = 𝐸𝑡0[𝑎(𝑋𝑡+∆𝑡 , 𝑌𝑡+∆𝑡)𝑒−𝑍𝑡+∆𝑡] 
Since D is finite and 𝐸𝑡0 = 𝐸𝑡0𝐸𝑡 

𝑚(𝑡 + ∆𝑡) = 𝐸𝑡0{[𝑎(𝑋𝑡 − 1, 𝑌𝑡 + 1)𝜋𝛼𝑋𝑡𝑌𝑡∆𝑡 
                                                  +𝑎(𝑋𝑡 − 1, 𝑌𝑡)(1 − 𝜋)𝛼𝑋𝑡𝑌𝑡∆𝑡 

                                         +𝑎(𝑋𝑡 , 𝑌𝑡 − 1)𝛽𝑌𝑡∆𝑡]𝑒−𝑍𝑡  
                                                              +𝑎(𝑋𝑡 , 𝑌𝑡)[1 − 𝛼𝑋𝑡𝑌𝑡 ++𝛽𝑌𝑡∆𝑡]𝑒−𝑍𝑡 
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                                                             (1 − ℎ(𝑋𝑡 , 𝑌𝑡)∆𝑡 − 1) + 𝑜(∆𝑡)} 
Therefore  

𝑚(𝑡 + ∆𝑡) − 𝑚(𝑡)∆𝑡 = 𝐸𝑡0{[𝑎(𝑋𝑡 − 1, 𝑌𝑡 + 1)𝜋𝛼𝑋𝑡𝑌𝑡 
                                                  +𝑎(𝑋𝑡 − 1, 𝑌𝑡)(1 − 𝜋)𝛼𝑋𝑡𝑌𝑡 

                                 +𝑎(𝑋𝑡 , 𝑌𝑡 − 1)𝛽𝑌𝑡 
                                                     −𝑎(𝑋𝑡 , 𝑌𝑡)[𝛼𝑋𝑡𝑌𝑡 + 𝛽𝑌𝑡]𝑒−𝑍𝑡  

                                                            −𝑎(𝑋𝑡𝑌𝑡)ℎ(𝑋𝑡 , 𝑌𝑡)]𝑒−𝑍𝑡 + 𝑜 (∆𝑡)∆𝑡 } 

Using Lebesgue’s theorem  

 𝑚𝑟′ (𝑡) = 𝐸𝑡0{[𝑎(𝑋𝑡 − 1, 𝑌𝑡 + 1) − 𝑎(𝑋𝑡 , 𝑌𝑡))𝜋𝛼𝑋𝑡𝑌𝑡 + 

                                                  +(𝑎(𝑋𝑡 − 1, 𝑌𝑡) − 𝑎(𝑋𝑡 , 𝑌𝑡))(1 − 𝜋)𝛼𝑋𝑡𝑌𝑡 
                             +(𝑎(𝑋𝑡 , 𝑌𝑡 − 1) − 𝑎(𝑋𝑡 , 𝑌𝑡)𝛽𝑌𝑡 

                  −𝑎(𝑋𝑡 , 𝑌𝑡)ℎ(𝑋𝑡 , 𝑌𝑡)]𝑒−𝑍𝑡} 
𝑚𝑟′ (𝑡) being the derivative on the right of m. 

When ∆𝑡 < 0 , put ∆𝑡′ = −∆𝑡, 𝑡′ = 𝑡 + ∆𝑡  and proceed in the same way using  

𝑚(𝑡 + ∆𝑡) − 𝑚(𝑡)∆𝑡 = 𝑚(𝑡′ + ∆𝑡′) − 𝑚(𝑡′)∆𝑡′      𝑓𝑜𝑟 ∆𝑡′ ≥ 0  
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 As a sample path of the process is a.s a step function which is continuous 

in t.let us  obtain for the derivative on the left 𝑚𝑟′ (𝑡) just the expression we have 

got for the one on the right. 

So 𝑚′(𝑡)  exists and if we choose a and h such that  

[𝑎(𝑖 − 1, 𝑗 − 1) − 𝑎(𝑖, 𝑗)]𝜋𝛼𝑖𝑗 + [𝑎(𝑖 − 1, 𝑗) − 𝑎(𝑖, 𝑗)](1 − 𝜋)𝛼𝑖𝑗 
    +[𝑎(𝑖, 𝑗 − 1) − 𝑎(𝑖, 𝑗)]𝛽𝑗 = 𝑎(𝑖, 𝑗)ℎ(𝑖, 𝑗)   𝑖, 𝑗 ∈ 𝐷 

𝑎(−1, 𝑗) and 𝑎(𝑖, −1) having any real value. 

Therefore we have 𝑚′(𝑡) = 0. 

Therefore 𝑚(𝑡) =   𝑚(𝑡0), 𝑡 ≥ 𝑡0. 

Therefore  

        𝐸𝑡0(𝑎(𝑋𝑡 , 𝑌𝑡)𝑒−𝑍𝑡) = 𝐸𝑡0(𝑎(𝑋𝑡0 , 𝑌𝑡0)𝑒−𝑍𝑡0)  = 𝑎(𝑋𝑡0 , 𝑌𝑡0)𝑒−𝑍𝑡0  

Thus we proved result (ii). 

Therefore {𝑉𝑛, ℱ𝑡} is a martingale. 

To find the solution of (). Put ℎ(𝑖, 𝑗) = (𝐴𝑖 + 𝐵)𝑗       𝑎(𝑖, 𝑗) = 𝐶𝑖𝜆𝑗. 
𝐴, 𝐵, 𝜆 being arbitrary positive constants. 

Therefore we have 

(𝐶𝑖−1𝜆𝑗+1 − 𝐶𝑖𝜆𝑗)𝜋𝛼𝑖𝑗 + [(𝐶𝑖−1𝜆𝑗 − 𝐶𝑖𝜆𝑗)](1 − 𝜋)𝛼𝑖𝑗 
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     +(𝐶𝑖𝜆𝑗−1 − 𝐶𝑖𝜆𝑗)𝛽𝑗 = 𝐶𝑖𝜆𝑗(𝐴𝑖 + 𝐵)𝑗   
 (𝜆𝐶𝑖−1𝜆𝑗+1 − 𝐶𝑖)𝜆𝑗𝜋𝛼𝑖𝑗 + (𝐶𝑖−1 − 𝐶𝑖)𝜆𝑗(1 − 𝜋)𝛼𝑖𝑗 
     +𝐶𝑖𝜆𝑗 (1𝜆 − 1)𝛽𝑗 = 𝐶𝑖𝜆𝑗(𝐴𝑖 + 𝐵)𝑗   
Put j = 0 we get an identity. For j > 0. 

(𝜆𝐶𝑖−1 − 𝐶𝑖)𝜋𝛼𝑖 + (𝐶𝑖−1 − 𝐶𝑖)(1 − 𝜋)𝛼𝑖 
     +𝐶𝑖 (1𝜆 − 1)𝛽 = 𝐶𝑖(𝐴𝑖 + 𝐵) 

𝐶𝑖 (𝐴𝑖 − 𝛽𝜆 + 𝛼𝑖 + 𝐵 − 𝛽) = 𝐶𝑖−1[𝛼𝑖(1 − 𝜋 + 𝜆𝑛𝜋)] 
 Put 𝜆 = 𝜆𝑛 = 𝛽(𝐴+𝛼)𝑛+𝐵+𝛽 in () 

(𝐴 + 𝛼)(𝑖 − 𝑛)𝐶𝑖 = 𝐶𝑖−1𝛼𝑖(1 − 𝜋 + 𝜆𝑛𝜋)  
Take  𝐶0 = 𝐶1 = ⋯……… .= 𝐶𝑛−1 = 0 

               1

n

n nC n
A

   


     
 

Therefore  () becomes  

   11n n i

i
C C

i n A

   
   

 
   for i > n 

Put  (𝑖)𝑛 = 𝑖 (𝑖 − 1)…………… . 𝑖 − (𝑛 − 1) 
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The general form of iC  is 

         1
1

i

i n

i
C

i A

   


      
 

 ( 1)....... ( 1) 1

i

ni i i n
A

   


        
 

                     1

i

nn
i

A

   


     
 

Theorem 10.2 

For A and B positive constants ∈ 𝑁 , 𝜆𝑛 = 𝛽((𝐴 + 𝛼)𝑛 + 𝐵 + 𝛽)−1 and  

     
 

0
, 1

      

t

u ui
i

AX B Y duX
Y

t n i n nn
V X e

A

   


 

Then (𝑉𝑡,𝑛; ℱ𝑡)𝑡≥0 is a martingale. Also ,
0

 t n
t

Sup V . 

Proof 

 We have proved that  

   1 ,
      

i

i nn
C i i N

A

   

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and    , , tZ
t n n t tV a X Y e  ,  

0

, 
t

t u uZ h X Y du  

Take    ,  iY

n i i i na X Y CX    

 ( , )  u u u uh X Y AX B Y  

Therefore 

     
 

0
, 1

      

t

u ui
i

AX B Y duX
Y

t n i n nn
V X e

A

   


              

is a martingale. 

Also ,
0

 t n
t

Sup V
 

The stopping times and the main relation 

      

Let  𝑇0 = 𝐼𝑛𝑓{𝑡: 𝑌𝑡 = 𝑟}  for r integer such that 0 ≤ 𝑟 < 𝑦0  

              𝑇1 = 𝐼𝑛𝑓{𝑡: 𝑋𝑡 + 𝑌𝑡 = 𝑟}  for r integer such that 𝑥0 ≤ 𝑟 < 𝑥0 + 𝑦0
 

     𝑇2 = 𝐼𝑛𝑓{𝑡: 2𝑋𝑡 + 𝑌𝑡 = 𝑟}  for r integer such that 2𝑥0 ≤ 𝑟 < 2𝑥0 + 𝑦0 

     (ie) 𝑇∈ = 𝐼𝑛𝑓{𝑡: ∈ 𝑋𝑡 + 𝑌𝑡 = 𝑟}  for r integer such that ∈ 𝑥0 ≤ 𝑟 <∈ 𝑥0 + 𝑦0 

with ∈= 0,1,2.   
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 Now the classical theorem on stopping times for martingales           𝐸[𝑉𝑇∈ , 𝑛] = 𝑉0,𝑛. 

∈ 𝑋𝑇∈ + 𝑌𝑇∈ = 𝑟 

Theorem 10.3 

For  𝑇∈ = 𝐼𝑛𝑓{𝑡: ∈ 𝑋𝑡 + 𝑌𝑡 = 𝑟}  , ∈ 𝑥0 ≤ 𝑟 <∈ 𝑥0 + 𝑦0 , ∈= 0,1,2.  
 

   
 

01







 


    

T

u uT

n

AX B Y duX

T
n

E X e
A

  
  

   
0

0
0 1

     

x
y

n nn
x

A

   
  

Where  

    1   
   nn

A n B

  
   

Proof 

 𝐸[𝑉𝑇∈ , 𝑛] = 𝑉0,𝑛 

Let us have 
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   
 
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



     

T

u uT AX B Y duX

T n
n

E X e
A

  
  

   
0

0
0 1

     

x
y

n nn
x

A

   
  

Multiply by 𝜆𝑛−𝑟  

   
 

01







 


    

T

u uT

n

AX B Y duX

T n
n

E X e
A

   
  

   
0

0
0 1

     

x
y r

n nn
x

A

   
  

Using  𝜖𝑥0 + 𝑦0 = 𝑟. 

The joint distribution of  𝑋𝑇∈ , ∫ 𝑋𝑢𝑑𝑢 𝑎𝑛𝑑 ∫ 𝑋𝑢𝑌𝑢𝑑𝑢𝑇∈0  𝑇∈0 . 
Let 𝑈 = (𝑢𝑛)𝑛≥0  be a sequence of real numbers. For any                       𝑛 ∈ 𝑁,𝑄𝑛(𝑥; 𝑈) be the unique polynomial in x of degree n satisfying for every 𝑖 ∈ 𝑁, 𝑄𝑛𝑖 (𝑢𝑖; 𝑈) = 𝛿𝑛𝑖 where 𝛿𝑛𝑖  is Kronecker’s function  

𝑄𝑛(𝑥, 𝑈) can be expressed in the following way. 

1. 𝑄0(𝑥, 𝑈) = 𝛿00 = 1 
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2. 

0 2

0 1 1

0 1 1( , ) ...... , 0
n

n

x

n n

u u u

Q x U d d d n

 

  




     

𝑄𝑛(𝑥, 𝑈) only depends on 𝑢0, 𝑢1, … . 𝑢𝑛−1 and not on the whole 

sequence U. 

 
0 0

2
0

0 0 1 1 0( , )
2


    




xx

n

u u

Q x U d u


   
 

 222
00

2 0( )
2 2 2

x uux
Q x u x


   

 

Similarly  

 0
( )

n

n

x u
Q x

n




 

Property 10.4  

If R is a polynomial of degree n then we have Abel’s expansion  

0

( ) ( ) ( )
n

j
j j

j

R x R u Q x



 

Proof 

 Put  
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0

( ) ( )
n

k k

k

R x b Q x



 

0 0

( ) ( )
k k

n n
j j j

j k j k j

k k

R u b Q u b b
 

   
 

Therefore  

0

( ) ( ) ( )
n

j
j j

j

R x R u Q x



 

Note 

If for every 𝑢𝑛 = 𝑢0 then  

0

( ) ( ) ( ) ( )



n

j
j j

j

i R x R u Q x

 

0 1 2
0 0 1 1 2 2( ) ( ) ( ) ( ) ( ) ....... ( ) ( )n

n nR u Q R u Q x R u Q x R u Q x    
 

2
1 20 0 0

0 1 2

( ) ( ) ( )
( ) ( ) ....... ( )

1 2

n
n

n

x u x u x u
b R u R u R u

n

  
    

 Therefore  R(x) is a Taylor’s  classical expansion 

(ii) 𝑓(𝑣) = 𝐸 [𝑣𝑥𝑇∈𝑒−∫ (𝐴𝑋𝑢+𝐵)𝑌𝑢𝑑𝑢𝑇∈0 ] 
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1
.
 


 

n
nu

A

 
  

𝑓 ′(𝑢𝑛) = 𝐸 [𝑢𝑛𝑥𝑇∈𝑒−∫ (𝐴𝑋𝑢+𝐵)𝑌𝑢𝑑𝑢𝑇∈0 ] [𝑥. 1𝑢𝑛] 
𝑓"(𝑢𝑛) = 𝐸 [ 1𝑢𝑛2 [𝑢𝑛𝑥𝑇∈𝑒−∫ (𝐴𝑋𝑢+𝐵)𝑌𝑢𝑑𝑢𝑇∈0 (𝑥𝑇∈)(𝑥𝑇∈ − 1) 

𝑓𝑛(𝑢𝑛) = 𝐸 [ 1𝑢𝑛𝑛 [𝑢𝑛𝑥𝑇∈𝑒−∫ (𝐴𝑋𝑢+𝐵)𝑌𝑢𝑑𝑢𝑇∈0 (𝑥𝑇∈)(𝑥𝑇∈ − 1). (𝑥𝑇∈ − (𝑛 − 1))      
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CHAPTER XI 

APPLICATIONS OF MARTINGALE THEORY TO SOME EPIDEMIC 

MODELS – II  

 Let us consider Wiess and Downton’s models with parameters 𝜋, 𝛼 and 𝛽 

depending on 𝑖 number of susceptibels and 𝑗 number of carriers. A martingale 

argument is performed when 𝜋  and 𝛼 𝛽⁄  only depend on 𝑖 or, in Weiss case 

when 𝛼 𝛽⁄  is the product of a function of  𝑖 by a function of 𝑗. In these cases the 

martingale approach proves very valuable and gives explicit results quite easily. 

In particular it shows that well – known relations between moments and 

integrals along a trajectory are still true for any stopping time and for more 

general models than the classic ones given by [30]. 

Introduction 

 Picard simple and explicit results for classical epidemics by a martingale 

argument. The purpose of the present Chapter is to show that such arguments 

are more powerful than one could have expected and also work for some 

generalizations of classical models. A Similar approach to the robustness of 

martingale theory has recently been developed by Heyde. 

 In classical epidemic models the parameters are considered as constants 

or exceptionally as function of time. Of course this is a rather crude 

approximation of reality and some writers have tried to build more realistic 
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models. In a real epidemic the increase of the number 𝑗 of infectives usually 

generates sanitary measures in order to isolate infectives and prevent contacts 

with susceptibles. 

 In this chapter let us introduce Downton’s model but with the following 

generalizations: the parameters  𝛼 and 𝛽 are supposed to be functions of 𝑖 and 𝑗. 𝜋  being a function of 𝑖 only. Such a model may seem intractable but when 𝛼𝑖𝑗 𝛽𝑖𝑗⁄  does not depend on 𝑗, or when 𝜋 = 0, 𝛼𝑛 𝛽𝑛⁄  being the product of a 

function of 𝑖  by a function of 𝑗 ,martingale arguments work quite well as in 

classical models. 

Definitions and Notations 

 For convenience let us sometimes write a instead of 𝛼𝑖𝑗  or 𝛼(𝑡, 𝑗) . 𝛽 

instead of 𝛽𝑖𝑗  or 𝛽(𝑖, 𝑗) , ∫ ℎ 𝑑𝑢𝑡0  instead of ∫ ℎ(𝑋𝑢, 𝑌𝑢) 𝑑𝑢𝑡0 , ∫ 𝑎 𝑋𝑢, 𝑌𝑢 𝑑𝑢𝑡0  

instead of ∫ 𝑎( 𝑋𝑢, 𝑌𝑢)  𝑋𝑢𝑌𝑢 𝑑𝑢𝑡0  and so on. 𝑓: ℕ → ℝ  is any function. Let us 

denote 𝑗𝑓(𝑗) by 𝑓(𝑗) and martingale 𝑉𝑡 instead of (𝑉𝑡 , ℱ𝑡), 𝑡 ≥ 0. 

Hypotheses and the key theorem 

 Let us take ℎ𝑖𝑗 = 𝐿𝑖𝛽𝑖𝑗 , 𝐿𝑖 ≥ 0 and suppose that the following hypotheses 𝐻1 and 𝐻2(𝑛), 𝑛 = 0,1,2, … … … , 𝑥0 are fulfilled. 

        𝐻1: For any 𝑖 and 𝑗, 𝛼𝑖𝑗 = 𝛽𝑖𝑗𝜂𝑖 with 𝜂 > 0 for 𝑖 > 0. 

        𝐻2(𝑛): For 𝑖 = 𝑛, 𝑛 + 1, … . . , 𝑥0,  
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 (𝜂̂𝑡 − 𝜂̂𝑛 + 𝐿𝑡 − 𝐿𝑛)(𝑖 − 𝑛)−1 is defined and ≠ 0. 

 Let us change  𝜋, 𝛼, 𝛽, 𝐴𝑖 + 𝐵 into 𝜋𝑖 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗 , … . . 𝐿𝑖𝛽𝑖𝑗. 

Theorem 11.1 

 For 𝜆𝑛 = (1 + 𝐿𝑛 + 𝜂̂𝑛) 

    𝛾𝑛(𝑠) = 𝛾𝑛(𝑠 + 𝑛) 

                ℎ𝑖𝑗 = 𝐿𝑖  𝛽𝑖𝑗   
and 𝑉𝑡 , 𝑛 = (𝑋𝑡)𝑛𝜋𝛾𝑛(𝑠)𝜆𝑛𝑦𝑒𝑥𝑝 (− ∫ ℎ(𝑥𝑢, 𝑦𝑢) 𝑑𝑢𝑡0 ) 

Then (𝑉𝑡 , 𝑛, ℱ𝑡), 𝑡 < 0 is a martingale. 

Proof 

Put 𝜋 = 𝜋𝑖 . 
       𝛼 = 𝛼𝑖𝑗  , 𝛽 = 𝛽𝑖𝑗. 

                𝐴𝑖 + 𝐵 = 𝐿𝑖  𝛽𝑖𝑗 

𝜆𝑛 = 𝛽(𝐴 + 𝛼)𝑛 + 𝐵 + 𝛽 = 𝛽𝑖𝑗𝐿𝑛𝛽𝑛 + 𝛼𝑖𝑗𝑛 + 𝛽𝑖𝑗 

      = 𝛽𝑖𝑗𝐿𝑛𝛽𝑛𝑗 + 𝛽𝑖𝑗𝑛𝑖𝑛 + 𝛽𝑖𝑗 = 𝛽𝑛𝑗𝛽𝑛𝑗(𝐿𝑛 + 𝜂𝑛𝑛 + 1) 

           𝜆𝑛 = 1𝐿𝑛 + 𝜂̂𝑛 + 1 
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        𝛾̂𝑛(𝑠) = 𝛾𝑛(𝑠 + 𝑛) 

𝛾𝑛(𝑖) = (1 − 𝜋𝑖 + 𝜆𝑛𝜋𝑖)(𝜂̂𝑖 − 𝜂̂𝑛 + 𝐿𝑖 − 𝐿𝑛)−1(𝑖 − 𝑛)𝜂𝑖                             
𝑉𝑡,𝑛 = (𝑋𝑖)𝑛(𝛼/𝐴)𝛼(1 − 𝜋 + 𝜋𝜆𝑛)𝑋𝑖(𝜆𝑛)𝑌𝑖𝑒𝑥𝑝 [− ∫(𝐴𝑥𝑢 + 𝐵)𝑦𝑢𝑑𝑢𝑡

0 ] 

𝑉𝑡 , 𝑛 = (𝑋𝑖)𝑛𝜋 ∏ 𝛾𝑛(𝑠)𝑋𝑖−𝑛
𝑠=1 𝜆𝑛𝑌𝑖𝑒𝑥𝑝 (− ∫ ℎ(𝑥𝑢, 𝑦𝑢) 𝑑𝑢𝑡

0 )                                  
is a martingale. 

Corollary 11.2 

For any stopping  time 𝑇 and 𝑛 = 0,1, … … … . , 𝑥0 

𝐸(𝑉𝑇,𝑛) = 𝑉0,𝑛 

Relations between moments and integrals along a trajectory 

 When 𝑛 = 0 the martingale 𝑉𝑡,𝑛 is very simple. Putting 

𝐿𝑖 = 𝐴𝑓𝑖𝜂̂𝑖 + 𝐵                                                      (11.1) 

Where 𝐴 and 𝐵 are non – negative constants and 𝑓𝜂̂ is a function ℕ → ℝ, 

let us have  

𝜆𝑛 = 11 + 𝐵      𝛾0(𝑠) = 𝛾0(𝑠) = 1 + (1 − 𝜋𝑠)𝐵(1 + 𝐵)(1 + 𝐴𝑓𝑠)          (11.2) 
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 Denoting 𝑉𝑡,0(𝐴, 𝐵) instead of  𝑉𝑡,0 in order to point to the dependence 

upon 𝐴 and 𝐵 

𝑉𝑡,0(𝐴, 𝐵) = ∏ 1 + (1 − 𝜋𝑠)𝐵(1 + 𝐵)(1 + 𝐴𝑓𝑠)𝑋𝑖
𝑠=1  (1 + 𝐵)−𝑌𝑗  𝑒𝑥𝑝 (− ∫ ℎ 𝑑𝑢𝑡

0 ) 

= ∏(1 + 𝐴𝑓𝑠)−𝑡𝑋𝑖
𝑠=1   𝑒𝑥𝑝 (−𝐴 ∫ 𝑓(𝑋𝑢) 𝛼( 𝑋𝑢, 𝑌𝑢) 𝑋𝑢𝑌𝑢𝑑𝑢𝑡

0 ) 

× ∏(1 + (1 − 𝜋𝑠)𝐵)𝑋𝑖
𝑠=1 (1 + 𝐵)−𝑋𝑖−𝑌𝑗  𝑒𝑥𝑝 (−𝐵 ∫ 𝛽( 𝑋𝑢, 𝑌𝑢)𝑌𝑢 𝑑𝑢𝑡

0 ) 

(11.3) 

Let us have the following result. 

Theorem 11.3 

 For any stopping  time 𝑇  and any non negative 𝐴, 𝐵  and                    𝑓𝜂̂ , 𝑉𝑇,0(0, 𝐵) = 𝑉𝑇,0(𝐴, 0), 𝑉𝑇,0(0, 𝐵)             (11.4) 

and 𝑉𝑇,0(𝐴, 0) and 𝑉𝑇,0(0, 𝐵) being uncorrelated. 

Proof 

 𝑉𝑇,0(𝐴, 0) and 𝑉𝑇,0(0, 𝐵) are martingale. 

 𝐸[𝑉𝑇,0(𝐴, 0), 𝑉𝑇,0(0, 𝐵)] = 𝐸[𝑉𝑇,0(𝐴, 𝐵)] = 𝑉0,0(𝐴, 𝐵) 
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               = 𝑉0,0(𝐴, 0), 𝑉0,0(0, 𝐵) 

      = 𝐸 (𝑉𝑇,0(𝐴, 0)) 𝐸 (𝑉𝑇,0(0, 𝐵)) 

Theorem 11.4 

 For any 𝑓𝜂̂: ℕ → ℝ. 

                            ∑ 𝑓𝑖𝑋𝑖
𝑖=1 + ∫ 𝑓(𝑋𝑢) 𝛼(𝑋𝑢, 𝑌𝑢)  𝑋𝑢𝑌𝑢𝑡

0  𝑑𝑢 

∑(𝑓𝑖)2𝑋𝑖
𝑖=1 + (∑ 𝑓𝑖𝑋𝑖

𝑖=1 + ∫(𝑋𝑢) 𝛼(𝑋𝑢, 𝑌𝑢)  𝑋𝑢𝑌𝑢𝑡
0  𝑑𝑢)2

 

are martingales. The first two are uncorrelated with the last two. 

Proof 

 Let us develop 𝑉𝑇,0(𝐴, 0) and 𝑉𝑇,0(0, 𝐵) according to 𝐴 and 𝐵  and pick 

up terms in 𝐴, 𝐴2, 𝐵 and 𝐵2. 

Theorem 11.5 

 For any 𝑓𝜂̂: ℕ → ℝ+, any 𝑔: ℕ → ℝ+ and any stopping time 𝑇: 

𝐸 (∫ 𝑓(𝑋𝑢) 𝛼(𝑋𝑢, 𝑌𝑢)  𝑋𝑢𝑌𝑢𝑡
0  𝑑𝑢) = 𝐸 ( ∑ 𝑓𝑖𝑋𝑠

𝑖=𝑥𝑇 )              (11.5) 
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            𝐸 (∫ 𝑔(𝑋𝑢) 𝛽(𝑋𝑢, 𝑌𝑢)𝑌𝑢𝑡
0  𝑑𝑢) 

= 𝐸 { ∑ (𝑔0𝜋𝑖 + (𝑔𝑖 − 𝑔0) 𝜂̂𝑖⁄ )𝑋𝑠
𝑖=𝑥𝑇 + 𝑔0(𝑦0 − 𝑌𝑡)}   (11.6) 

Proof 

 The martingale property applied to the first martingale in 

Theorem (11.5) gives immediately. As for (11.6) let us put  

𝑔𝑖 = 𝑔0 + (𝑔𝑖 − 𝑔0)𝜂̂𝑖/𝜂̂𝑖 
and then 

  

𝐸 (∫ 𝑔(𝑋𝑢) 𝛽(𝑋𝑢, 𝑌𝑢)𝑌𝑢𝑡
0  𝑑𝑢) 

= 𝑔0𝐸 (∫  𝛽(𝑋𝑢, 𝑌𝑢)𝑌𝑢𝑡
0  𝑑𝑢) + 𝐸 (∫ 𝑔(𝑋𝑢) − 𝑔(0)𝜂̂ (𝑋𝑢)  𝛼(𝑋𝑢, 𝑌𝑢)𝑌𝑢𝑡

0  𝑑𝑢) 

 Using (11.5) and the martingale property applied to the third martingale 

Theorem 11.2 let us obtain (11.6). 
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Theorem 11.4 

 For any Stopping time 𝑇, 𝐸 {∫  𝛼(𝑋𝑢, 𝑌𝑢)𝑋𝑢𝑌𝑢𝑡0  𝑑𝑢}  is the expected 

number of susceptibles involved in the epidemic between tome 0 and T  and 𝐸 {∫  𝛽(𝑋𝑢, 𝑌𝑢)𝑌𝑢𝑡0  𝑑𝑢}  is the expected number of detected and eliminated 

carriers during the same period. 

Applications 

 Relation such as (11.5) are interesting when let us have to solve statistical 

Problems. For instance if  𝛼  is a constant (11.5) suggests introducing                   (𝑥0 − 𝑋𝑇)−1 ∫  𝑋𝑢, 𝑌𝑢𝑑𝑢𝑡0  as an estimator for 1/𝛼  whichever 𝛽  and 𝜋  may be 

constants or not. If 𝛼𝑛 = 𝛼0 + 𝛼1𝑖 . 𝛼0  and 𝛼1  being unknown constants 𝑈𝑘 = ∫  𝑋𝑢𝑘, 𝑌𝑢𝑑𝑢𝑡0  and 𝑓𝑖 = 𝑖𝑘, 𝑘 ∈ 𝑁 into (11.5), let us get 

𝑎0𝐸(𝑈𝑘+1) + 𝑎1𝐸(𝑈𝑘+2) = 𝐸 ( ∑ 𝑖𝑘𝑔𝑢
𝑖=𝑋𝑇 )                               (11.7) 

This relation used for 𝑘 = 0 and 𝑘 = 1 gives 𝑎0 and 𝑎1 as soon as 𝐸(𝐽1), 𝐸(𝑈2), 𝐸(𝑈3), 𝐸(𝑋𝑇), 𝐸(𝑋𝑇2)  are known. Therefore if we find these five expectations it 

is possible to get estimates for 𝑎0 and 𝑎1. 

The joint distribution of  𝑿𝑻𝟎 and ∫ 𝒉 𝒅𝒖𝑻𝟎𝟎  

 Let us make use of the stopping times 𝑇0 defined already. 
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1.  A particular Case: 

Take 𝜋𝑖 = 𝜋0, 𝜂𝑖 = (𝑐0 + 𝑐1𝑖)−1, ℎ𝑖𝑗 = 𝐿𝑖𝛽𝑖𝑗𝑗 = (𝐴′𝜂̂𝑖 + 𝐵′)𝛽𝑖𝑗𝑗  with 𝜋, 𝑐0, 𝑐1, 𝐴′, 𝐵′ constants. First check that 𝐻2(𝑛) is fulfilled for any n, then let us 

find   

𝜆𝑛 = 𝑐0 + 𝑐1𝑛(1 + 𝐵′)𝑐0 + (1 + 𝐴′(1 + 𝐵′))𝑛                          (11.8) 

and 𝛾𝑛(𝑖) = (1 − 𝜋 + 𝜋𝜆𝑛)(1 + 𝑐1𝑛 𝑐0⁄ )(1 + 𝐴′)−1             (11.9) 

which does not depend on 𝑖 and will be denoted 𝛾𝑛. As a consequence ∏ 𝛾𝑛(𝑠)𝑋𝑡−𝑛𝑠=1  is now 𝛾𝑛𝑋𝑡−𝑛
 and theorem 11.2 takes the form of theorem.  

Applications 

1. 𝛽𝑖𝑗 = 𝑐0 + 𝑐1𝑖, 𝛼𝑖𝑗  being a constant. This case has been studied in 

Routlet. 

2. Two cases in which 𝛼𝑖𝑗𝛽𝑖𝑗−1 = (𝑐0 + 𝑐1𝑖)−1  and 𝛼, 𝛽−1  are increasing 

functions of  𝑖. 
i. 𝑎𝑖𝑗 = (𝑏0 + 𝑏1𝑖)(𝑐0 + 𝑐1𝑖), 𝛽 = 𝑏0 + 𝑏1𝑖  with 𝑏0, 𝑐0, −𝑏1, −𝑐1 

positive constants and 𝑥0 < −𝑐0/𝑐1 < −𝑏0/𝑏1. 

ii. 𝑎𝑖𝑗 = 𝑎0 + 𝑎1𝑖, 𝛽𝑖𝑗 = (𝑎0 + 𝑎1𝑖)(𝑐0 + 𝑐1𝑖)  with 𝑎0, 𝑎1, 𝑐0, −𝑐1 

positive constants and 𝑥0 < −𝑐0/𝑐1 < −𝑎0/𝑎1. 

3. 𝜂𝑖 not a special form: After introducing  a generalization Gontcharoff’s 

polynomials it is possible to study the general case. The argument is 
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always of the same kind but the results are of course less easy to handle 

and will not be given here. 

A Basic Martingale 

 Let us suppose that 𝜋 = 0 and 𝛼/𝛽 is the product of  a function of 𝑖 by a 

function of 𝑗 , hence 𝐻1 is replaced by 𝐻1 ≔ 𝛼𝑖𝑗 = 𝜂𝑖𝜇𝑖𝜒𝑖𝑗 , 𝛽𝑖𝑗 = 𝜌𝑖𝜒𝑖𝑗 with 𝜂𝑖 > 0 for 𝑖 > 0, 𝜇𝑖 > 0, 𝜌𝑖 > 0 for 𝑗 > 0, 𝜒𝑖𝑗 > 0 for 𝑖 ≧ 0, 𝑗 ≧ 0. 

 Besides, let us take  

   ℎ𝑖𝑗 = (𝐿𝑡𝜇̂𝑡 + 𝑀̂𝑡)𝜒𝑖𝑗 with 𝐿 ≧ 0, 𝑀 ≧ 0                    (11.10) 

and keep the auxiliary hypothesis 𝐻2(𝑛) unmodified. Now 

   𝑎(𝑖, 𝑗) = 𝐶1𝐷1 

and  𝛼, 𝛽 taken according to 𝐻3 , led to  (𝐶𝑖−1 − 𝐶𝑖)𝐷𝑗𝜂̂𝑖𝜇̂𝑖𝜒𝑖𝑗 + 𝐶𝑡(𝐷𝑗−1 − 𝐷𝑗)𝜌𝑗𝜒𝑖𝑗 = (𝐿𝑖𝜇̂𝑗 + 𝑀̂𝑗)𝐶𝑖𝐷𝑗𝜒𝑖𝑗    (11.11) 

and after a routine argument, 

𝐶𝑖 = (𝑖)𝑛 ∏ 𝛾𝑛(𝑠 + 𝑛),𝑖−𝑛
𝑠=1            𝐷𝑗 = ∏ 𝛿𝑛(𝑠),𝑗

𝑠=1                   (11.12) 

with 

𝛿𝑛(𝑠) = 𝜌𝑠𝜌𝑠 + 𝑀𝑠 + (𝜂̂𝑛 + 𝐿𝑛)𝜇𝑠 ,            𝛾𝑛(𝑖) = 𝜂𝑖(𝑖 − 𝑛)𝜂̂𝑖 − 𝜂̂0 + 𝐿𝑖 − 𝐿𝑛   (11.13) 

Finally have the following result. 
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Theorem 11.5 

 ℎ, 𝛿𝑛 and 𝛾𝑛 being defined by (11.10) and (11.13) put  

𝑊𝑡,𝑛 = (𝑋𝑇)𝑛 ∏ 𝛾𝑛(𝑠 + 𝑛)𝑋𝑡−𝑛
𝑠=1 ∏ 𝛿𝑛(𝑠)𝑌𝑡

𝑠=1  𝑒𝑥𝑝 (− ∫ ℎ 𝑑𝑢𝑡
0 ) 

then (𝑊𝑡,𝑛; ℱ𝑡)𝑡≧0 is a martingale. 

Now put 𝐿𝑖 = 𝐴𝑓𝑖𝜂̂𝑖 ,       𝑀̂𝑖 = 𝐵𝑔𝑗𝜌𝑗                                     (11.14) 𝐴, 𝐵  non – negative constants.  𝑓𝜂̂  and 𝑔𝜌̂  functions ℕ → ℝ+ , have a 

quite simple 𝑊𝑡,0 

𝑊𝑡,0 = ∏ (1 + 𝐴𝑓𝑖)−1𝑋𝑡−𝑛
𝑠=1  𝑒𝑥𝑝 (−𝐴 ∫ 𝑓(𝑋𝑢) 𝛼(𝑋𝑢, 𝑌𝑢)𝑋𝑢𝑌𝑢𝑡

0  𝑑𝑢) 

+ ∏ (1 + 𝐵𝑔𝑠)−1𝑋𝑡−𝑛
𝑠=1  𝑒𝑥𝑝 (−𝐵 ∫ 𝑔(𝑌𝑢) 𝛽(𝑋𝑢, 𝑌𝑢)𝑌𝑢𝑡

0  𝑑𝑢) 

 These Theorems are valid with 𝑊 substituted for 𝑉, and 

∑ 𝑔𝑠𝑌𝑡
𝑖 + ∫ 𝑔𝛽𝑌𝑢𝑡

0  𝑑𝑢 𝑎𝑛𝑑  ∑ 𝑔𝑠2𝑌𝑡
𝑖 + (∑ 𝑔𝑠𝑌𝑡

𝑖 + ∫ 𝑔𝛽𝑌𝑢𝑡
0  𝑑𝑢)2

 

Substituted for the third and the fourth martingales. 
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CHAPTER XII 

A MODIFICATION OF THE GENERAL STOCHASTIC EPIDEMIC 

MOTIVATED BY AIDS MODELLING 

In this Chapter let us consider a model for the spread of an epidemic in a 

closed, homogeneously mixing population in which new infections occur at rate 𝛽𝑥𝑦 (𝑥 + 𝑦)⁄ , where 𝑥  and 𝑦  are the numbers of susceptible and infectious 

individuals, respectively, and   is an infection parameter. This contrasts with 

the standard general epidemic in which new infections occur at 𝛽𝑥𝑦. Both the 

deterministic and stochastic versions of the modified epidemic are analysed. 

The deterministic model is completely soluble. The time – dependent solution 

of the stochastic model is derived. Threshold theorems, analogous to those of 

Whittle and Williams for the general stochastic epidemic, are proved for the 

stochastic model, given by [16]. 

Introduction 

The considerable literature now existing on stochastic epidemic models is 

mainly concerned with closed population epidemics, such as the general 

stochastic epidemic, and thus is of limited direct use in modelling most AIDS 

epidemics where immigrations into and deaths from the class of susceptibles 

can be an important feature. Nevertheless there have been many studies of 

closed population models of AIDS. As such models can provide a good 
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description of the short term behaviour of an epidemic. They can provide a 

useful indication of the likely effects of some parameters in more complicated 

models incorporating immigration and deaths. However standard stochastic 

epidemic theory is often still not applicable because the infection process is 

modelled slightly differently.  𝛽𝑥𝑦  term where x and y are the numbers of 

susceptible and infectives  for the rate of new infections is replaced by 𝛽𝑥𝑦 (𝑥 + 𝑦)⁄ . 

So if removed individuals are no longer available as sexual partners and 

new patterns are chosen at random from the population of possible partners, 

then the probability that a new partner of a given susceptible is infected  is 𝑦 (𝑥 + 𝑦)⁄ . The Purpose of the present paper is to analyze deterministic and 

stochastic closed population epidemics with the above modified infection. 

First let us define the stochastic version of our model more precisely. 

Consider a closed population consisting initially of a infectives and 𝑛 

susceptibles. For 𝑡 ≧ 0, let 𝑋(𝑡), 𝑌(𝑡) and 𝑍(𝑡) be respectively the numbers of 

susceptible, infective and removed individuals at time t. suppose further that 𝑋(𝑡) + 𝑌(𝑡) + 𝑍(𝑡) = 𝑛 + 𝑎 (𝑡 ≧ 0) so the process is completely determined 

by  {(𝑋(𝑡), 𝑌(𝑡)), 𝑡 ≧ 0} which we assume is a continuous – time Markov chain 

on the state space {(𝑥, 𝑦) ∈ ℤ2: 𝑥 + 𝑦 ≦ 𝑛 + 𝑎, 0 ≦ 𝑥 ≦ 𝑛, 𝑦 ≧ 0}  with 

transition probabilities 
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𝑃𝑟{(𝑋(𝑡 + ∆𝑡), 𝑌(𝑡 + ∆𝑡)) = (𝑥 − 1, 𝑦 + 1)|(𝑋(𝑡), 𝑌(𝑡)) = (𝑥, 𝑦)} 
                         = 𝛽𝑥𝑦(𝑥 + 𝑦)−1∆𝑡 + 𝑜(∆𝑡) 

         𝑃𝑟{(𝑋(𝑡 + ∆𝑡), 𝑌(𝑡 + ∆𝑡)) = (𝑥, 𝑦 − 1)|(𝑋(𝑡), 𝑌(𝑡)) = (𝑥, 𝑦)} 
                                                     = 𝛾𝑦∆𝑡 + 𝑜(∆𝑡) 
and all other transitions having probability 𝑜(∆𝑡). Let us refer to this epidemic 

model as the modified stochastic epidemic. 

The Chapter is structured as follows. The deterministic version of our 

modified stochastic epidemic is considered. 𝑁  contrast to the general 

deterministic epidemic, this surprisingly admits a complete closed – form 

solution. The stochastic version is explained. Its temporal solution is derived 

using the Method of Kryscio [25]. The total size distribution is also examined 

and threshold theorems, analogous to those of Whitttle and Williams are 

proved. The effect of introducing varying susceptibilities to the disease into the 

model is considered. Using the methods similar to those of  Ball [16]. 

Deterministic Model 

Exact Solution and Final Outcome: 

For 𝑡 ≧ 0 , let 𝑥(𝑡), 𝑦(𝑡)  and 𝑧(𝑡)  be respectively the numbers of 

susceptible, infective and removed individuals at time 𝑡 . The deterministic 

model of the modified epidemic is given by 
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𝑑𝑥𝑑𝑡 = −𝛽𝑥𝑦                                                           (12.1) 𝑑𝑦𝑑𝑡 = 𝛽𝑥𝑦𝑥 + 𝑦 − 𝛾𝑦,                                                  (12.2) 
𝑑𝑧𝑑𝑡 = 𝛾𝑦                                                                  (12.3) 

With initial conditions 𝑥(0) = 𝑛 ,     𝑦(0) = 𝑎,      𝑧(0) = 0.           (12.4) 

Equations (12.1) and (12.2) imply that 

𝑑𝑥𝑑𝑧 = −𝑥𝜌(𝑛 + 𝑎 − 𝑧)                                                      (12.5) 
Where 𝜌 = 𝛾/𝛽, which together with (12.4) yields 

𝑥(𝑡) = 𝑛(1 − 𝑧(𝑡)/(𝑛 + 𝑎))1 𝑝⁄                          (𝑡 ≧ 0)              (12.6) 

Substituting (12.5) into (12.3)   

𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡) = 𝑛 + 𝑎          (𝑡 ≧ 0)                        (12.7) 

After integration and 𝜌 = 1 then 

𝑥(𝑡) = 𝑛 exp(−𝑎𝛾𝑡/𝑁)𝑦(𝑡) = 𝑎 exp(−𝑎𝛾𝑡/𝑁)             𝑧(𝑡) = 𝑁(1 − exp(−𝑎𝛾𝑡/𝑁))}  
                                       (12.8) 

Where 𝑁 = 𝑛 + 𝑎. If 𝜌 ≠ 1 
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𝑥(𝑡) = 𝑛{N−1( 𝑛 + 𝑎 exp(𝛽 − 𝛾)𝑡))}1/(𝜌−1)𝑦(𝑡) = 𝑎{N−1( 𝑛 + 𝑎 exp(𝛽 − 𝛾)𝑡))}1/(𝜌−1) exp(𝛽 − 𝛾)𝑡)             𝑧(𝑡) = 𝑁[1 − {N−1( 𝑛 + 𝑎 exp(𝛽 − 𝛾)𝑡))}1/(𝜌−1)] }  
  

          (12.9) 

Let 𝑇 = lim𝑛→∞ 𝑧(𝑡) − 𝑎 be the total size of the epidemic, i.e the number 

of initial susceptibles that are ultimately infected by the epidemic. Thus we get  

𝑇 = {𝑛 𝑖𝑓 𝜌 ≦ 1,𝑛(1 − (𝑛/𝑁)1/(𝜌−1)) 𝑖𝑓  𝜌 > 1.                      (12.10) 

Thus if  𝜌 ≦ 1  the epidemic ultimately sweeps through the whole 

population. This contrasts sharply with what one might except to occur in             

real – life epidemics, and also with the final outcome of the general 

deterministic epidemic. 

Threshold Behaviour 

 It is well known that the threshold behaviour of the general deterministic 

epidemic is governed by the value of the relative removal rate 𝜌 = 𝛾/𝛽, where 𝛾 𝑎𝑛𝑑 𝛽  are respectively the infection and removal rates.If 𝜌 < 𝑛 , no true 

epidemic occurs, since 𝑑𝑦 𝑑𝑡⁄ |𝑡=0 < 0.  

However, the situation is not so straightforward for the modified 

epidemic. By noting that 

𝑑𝑦𝑑𝑡 ⋚ 0  𝑤ℎ𝑒𝑛 𝜌 ⋛  𝑥𝑥 + 𝑦 
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and 

𝑑𝑑𝑡 ( 𝑥𝑥 + 𝑦) = 𝑥𝑦(𝛾 − 𝛽)(𝑥 + 𝑦)2 ⋚ 0  𝑤ℎ𝑒𝑛 𝜌 ⋛  1 

Let us use the previous results to summarise the threshold behaviour of 

the modified epidemic as follows: 

1. 𝜌 > 1,  𝑑𝑦𝑑𝑡 < 0 for all t, 𝑥(∞) > 0; 
2. 

𝑛𝑛+𝑎  ≦ 𝜌 ≦ 1 , 𝑑𝑦𝑑𝑡 < 0 for all t  (𝑒𝑥𝑐𝑒𝑝𝑡 𝑡 = 0 𝑖𝑓 𝜌 =  𝑛𝑛+𝑎) 𝑥(∞) > 0; 
3. 𝜌 < 𝑛𝑛+𝑎 , 𝑑𝑦 𝑑𝑡⁄ |𝑡=0 > 0, 𝑥(∞) > 0; 

In particular note that it is possible for all of the initial susceptibles to 

ultimately contract the disease even if the number of infectives is always 

decreasing. 

Comparison with General Deterministic Epidemic 

 For 𝑡 ≧ 0 , let 𝑥̅(𝑡), 𝑦̅(𝑡)  and 𝑧̅(𝑡)  denote, respectively, the number of 

susceptible, infectious ad removed individuals in a general deterministic 

epidemic with infection rate 𝛽 (𝑛 + 𝑎)⁄ ,  removal rate 𝛾  and initial condition (𝑥̅(0), 𝑦̅(0), 𝑥̅(0)) = (𝑛, 𝑎, 0). Thus  
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𝑑𝑥̅𝑑𝑡 = −𝛽(𝑛 + 𝑎) 𝑥̅𝑦̅           𝑑𝑦̅𝑑𝑡 = 𝛽(𝑛 + 𝑎) 𝑥̅𝑦̅ − 𝛾𝑦̅𝑑𝑧̅𝑑𝑡 = 𝛾𝑦̅                         }   
                              (12.11) 

 The above epidemic and our modified epidemic have identical initial rate 

of spread. In the modified epidemic the infection rate increases as the epidemic 

progresses, while it remains constant in the general epidemic. Thus the spread 

of infection is faster and more severe in the modified epidemic than in the 

general epidemic. This can be shown as follows: 

 By letting 𝑡 → ∞ (12.6) and (12.7)  we find that 𝑧(∞) = lim𝑡→∞ 𝑧(𝑡) is 

given by the smallest root in [0, 𝑛 + 𝑎] of  𝑓(𝑧) = 0, where 

𝑓(𝑧) = 𝑛 + 𝑎 − 𝑧 − 𝑛 (1 − 𝑧𝑛 + 𝑎)1 𝜌⁄                        (12.12) 
A similar argument for the general epidemic shows that 𝑧̅(∞) is given by the 

unique root in [0, 𝑛 + 𝑎] of  𝑔(𝑧) = 0, where 

𝑔(𝑧) = 𝑛 + 𝑎 − 𝑧 − 𝑛 exp {−𝑧/((𝑛 + 𝑎)𝜌)}                 (12.13) 

Now exp(−𝑥) > 1 − 𝑥 (𝑥 > 0) . So 𝑓(𝑧) > 𝑔(𝑧)(𝑧 > 0)  and hence 𝑧(∞) = 𝑧̅(∞). Thus the total size of the modified epidemic is strictly larger than 

that of the general epidemic. 

𝑑𝑧𝑑𝑡 = 𝛾𝑓(𝑧)             𝑎𝑛𝑑            𝑑𝑧̃𝑑𝑡 = 𝑔𝑓(𝑧̃)               
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So it also follows that  𝑧(𝑡) ≧ 𝑧̃(𝑡) for all 𝑡 ≧ 0,with strict inequality for 𝑡 > 0 . Finally, using (12.6) and a corresponding equation for the general 

epidemic yields that 𝑥(𝑡) ≦ 𝑥̃(𝑡) for all 𝑡 ≧ 0, and again the inequality is strict 

for 𝑡 > 0. 

Stochastic Model 

 Let us now consider the simplest probability version of the deterministic 

model. As before, assume a homogeneously mixing group of n + 1 individuals 

and suppose for simplicity that the epidemic starts at time t = 0 with one 

infective and n susceptibles. This time let us take the random variables X(t) and 

Y(t) to represent the number of susceptibles and infetives respectively at time t, 

where  𝑥(𝑡)  +  𝑦(𝑡)  =  𝑛 +  1 .Then the chance of a contact between any two 

specified individuals in an interval t is b 𝑡 +  𝑜(𝑡), where b is the contact 

rate, and b =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. It follows that the chance of one new infection in the 

whole group in t is bXY t  to order t. When this transition occurs X 

decreases by one unit and Y increases by one unit. Suppose if take the 

possibility of removal, then the chance of one removal in 𝑡 can be taken as 

g𝑦𝑡 where g is the removal rate. The variable Y decreases by one unit after the 

transition, but  X  remains unchanged. 

 Let us suppose that at time t = 0, there are n susceptibles and a infectives. 

Let 𝑃𝑛(𝑡) be denoted as the probability that at time t, there are r susceptibles 



177 

 

still uninfected and s infectives in circulation. The chance of one new infection 

in time t is taken to be b𝑟𝑠 𝑡 and the change of one removal g𝑠𝑡. Also the 

time interval from the infection of any given susceptible to his eventual removal 

has a negative exponential distribution. Also the time scale is given by  t =  b𝑡, 
instead of t and g / b =  r , the ration of removal rate to infection rate which we 

shall call the relative removal rate. 

If 𝛽 = 1  then 𝛾 = 𝜌 . For 𝑡 ≧ 0 , let 𝑝𝑟,𝑠(𝑡) = 𝑃𝑟{(𝑋(𝑡), 𝑌(𝑡)) = (𝑟, 𝑠)} ((𝑟, 𝑠) ∈ 𝐸𝑛,𝑎),  

where 𝐸𝑛,𝑎 = {(𝑟, 𝑠) ∈ ℤ2: 0 ≦ 𝑟 + 𝑠 ≦ 𝑛 + 𝑎, 0 ≦ 𝑟 ≦ 𝑛, 0 ≦ 𝑠 ≦ 𝑛 + 𝑎}  is 

the set of possible states that the epidemic can visit. 

Let us have, 

𝑑𝑝𝑟,𝑠𝑑𝑡 = (𝑟 + 1)(𝑠 − 1)(𝑟 + 𝑠) 𝑝𝑟+1,𝑠−1 + 𝜌(𝑠 + 1)𝑝𝑟,𝑠+1 − 𝑠 ( 𝑟𝑟 + 𝑠 + 𝜌) 𝑝𝑟,𝑠    
                                                                                    ((𝑟, 𝑠) ∈ 𝐸𝑛,𝑎),  (12.14) 

and 𝑝𝑟,𝑠 ≡ 0 if (𝑟, 𝑠) ∉ 𝐸𝑛,𝑎, together with the initial condition 𝑝𝑛,𝑎(0) = 1. 

For (𝑟, 𝑠) ∈ 𝐸𝑛,𝑎 let  

𝑞𝑟,𝑠(𝜆) = ∫ exp(−𝜆𝑢)𝑝𝑟,𝑠(𝑢)𝑑𝑢 ∞

0                       (𝜆 ≧ 0) 
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Taking the Laplace transform of (12.14) yields 

(𝑟 + 1)(𝑠 − 1)𝑞𝑟+𝑎,𝑠−1 + 𝜌(𝑟 + 𝑠)(𝑠 + 1)𝑞𝑟,𝑠−1 

                                         −(𝑠𝑟 + (𝑟 + 𝑠)(𝜌𝑠 + 𝜆))𝑞𝑟,𝑠 = 0    
((𝑟, 𝑠) ∈ 𝐸𝑛,𝑎|{𝑛, 𝑎})     (12.15) 

[𝜆 + 𝑎 ( 𝑛𝑛 + 𝑎 + 𝜌)] 𝑞𝑛,𝑎 − 1 = 0                                        (12.16) 
By solving (2.15) and (2.16) can be solved to get 𝑞𝑟,𝑠 ((𝑟, 𝑠) ∈ 𝐸𝑛,𝑎), 

which can then be inverted to obtain the time – dependent solution of the 

epidemic. 

 The epidemic may be viewed as a random walk on 𝐸𝑛,𝑎 , defined as 

follows. For 𝑘 =  1,2,…… ., let (𝑋𝑘 , 𝑌𝑘) denote the kth state of 𝐸𝑛,𝑎 visited by 

the epidemic, and (𝑋0, 𝑌0) = (𝑛, 𝑎) . The Markov property implies that the 

epidemic will remain in a state (𝑋𝑘 , 𝑌𝑘) = (𝑥, 𝑦) ∈ 𝐸𝑛,𝑎 for a time 𝐴𝑘 having a 

negative exponential distribution with mean (𝑥𝑦/(𝑥 + 𝑦) + 𝜌𝑦)−1  and on 

leaving the state (𝑋𝑘, 𝑌𝑘) the epidemic will proceed according to the transition 

probabilities 

𝑃𝑟{(𝑋𝑘+1, 𝑌𝑘+1) = (𝑥 − 1, 𝑦 + 1)|(𝑋𝑘, 𝑌𝑘) = (𝑥, 𝑦)} = 𝑥𝑥 + 𝜌(𝑥 + 𝑦), 
𝑃𝑟{(𝑋𝑘+1, 𝑌𝑘+1) = (𝑥, 𝑦 − 1)|(𝑋𝑘, 𝑌𝑘) = (𝑥, 𝑦)} = 𝜌(𝑥 + 𝑦)𝑥 + 𝜌(𝑥 + 𝑦), 
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corresponding to the occurrence of an infection and a removal, respectively. 

The epidemic terminates as soon as 𝑌𝑘 = 0 for some 𝑘 > 0. supposing that 𝑘 =  𝑚, say, the sets {(𝑋𝑘, 𝑌𝑘): 0 ≦ 𝑘 ≦ 𝑚} and {𝐴𝑘: 0 ≦ 𝑘 ≦ 𝑚} describe the 

progress of a random walk on 𝐸𝑛,𝑎 where the (𝑋𝑘 , 𝑌𝑘)‘𝑠 correspond to the states 

visited and the 𝐴𝑘‘𝑠 are the holding times in these states.  

 Let us derive an expression for 𝑝𝑟,𝑠(𝑡)  by conditioning on 𝑅(𝑛, 𝑎) 
following a particular path from (𝑁 − 𝑎, 𝑎) to (𝑟, 𝑠) and taking a weighted sum 

over all such paths, with weights given by the probabilities that the process 

traverses the different paths. 

 Let us adopt the following notation. A path d from (𝑚,𝑤) to (𝑟, 𝑠) is a 

set of ordered points {(𝑠1𝑑(0), 𝑠2𝑑(0)) , (𝑠1𝑑(1), 𝑠2𝑑(1)) ,……………… . (𝑠1𝑑(𝐸), 𝑠2𝑑(𝐸))} , 

where 

(i).      𝐸 = 2(𝑚 − 𝑟) + (𝑤 − 𝑠) is the path length 

(ii). (𝑠1𝑑(0), 𝑠2𝑑(0)) = (𝑚,𝑤); 
(iii). (𝑠1𝑑(𝐸), 𝑠2𝑑(𝐸)) = (𝑟, 𝑠); 
(iv). (𝑠1𝑑(𝑗), 𝑠2𝑑(𝑗)) − (𝑠1𝑑(𝑗+1), 𝑠2𝑑(𝑗+1)) = (1,−1 or (0,1) (𝑗 = 0,1,…… . , 𝐸) 
(v). 𝑠2𝑑(𝑗) > 0    (𝑗 = 0,1,…… . , 𝐸) 
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 Let D denote the set of all paths from (𝑁 − 𝑎, 𝑎) to (𝑟, 𝑠). writing 𝜋𝑑 for 

the probability that the process takes path 𝑑  and 𝑝𝑟,𝑠∗ (𝑡, 𝑑)  for 𝑝𝑟,𝑠(𝑡) 
conditional on taking path 𝑑, then  

𝑝𝑟,𝑠(𝑡) = ∑𝜋𝑑𝑝𝑟,𝑠∗ (𝑡, 𝑑)𝑑∈𝐷                                                     (12.17) 
From (12.17) 

𝜋𝑑 =∏𝑞𝑗 [𝑠1𝑑(𝑗−1) + 𝜌(𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1))]−1𝐸
𝑗=1  

 Where 𝑞𝑗 = 𝑠1𝑑(𝑗−1) or 𝜌(𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1)) depending upon whether the jth 

step in 𝑅(𝑛, 𝑎) is an infection or a removal, respectively. However, since a path 

from (𝑁 − 𝑎, 𝑎)  to  (𝑟, 𝑠)  must always contain 𝑁 − 𝑎 − 𝑟  infections and                     𝑁 –  𝑟 −  𝑠 removals, the product of the 𝑞𝑗′𝑠 is completely determined, so that  

𝜋𝑑 = (𝑁 − 𝑎)!𝑟!  𝜌𝑁−𝑟−𝑠 𝑁!(𝑟 + 𝑠)!∏(𝑏𝑑(𝑗))−1𝐸
𝑗=1  𝑠2𝑑(𝑗−1)                   (12.18) 

Where 

  𝑏𝑑(𝑗) = 𝑠2𝑑(𝑗−1) [𝑠1𝑑(𝑗−1) + 𝜌(𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1))]                                       (12.19)  
To evaluate 𝑝𝑟,𝑠∗ (𝑡, 𝑑) let us prove that the following result. 
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Theorem 12.1 

 Let 𝑇1, 𝑇2, ……… . , 𝑇𝑛 be independent random variables having negative 

exponential distributions with distinct means 𝜇1−1, 𝜇2−1, ……… . . , 𝜇𝑛−1 , 

respectively, and -𝑆𝑛 = ∑ 𝑇𝑘𝑛𝑘=1 . Then  

𝑃𝑟{𝑆𝑛 < 𝑡} = 1 −∑𝐶𝑛,𝑗 exp(−𝜇𝑗𝑡)𝑛
𝑗=1  

Where    

𝐶𝑛,𝑗 =∏𝜇𝑖(𝜇𝑖 − 𝜇𝑗)−1𝑛
𝑖=1𝑖≠𝑗

               (𝑗 = 1,2,…… , 𝑛) 
The time spent by 𝑅′(𝑛, 𝑎) in state (𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1)) has negative exponential 

distribution with mean 𝑏̃𝑑(𝑗), where 

𝑏̃𝑑(𝑗) = 𝑏𝑑(𝑗) (𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1))−1                     (12.20) 

Now since 𝑅′(𝑛, 𝑎)  enters state (𝑟, 𝑠) after E steps and leaves at the (𝐸 + 1) th 

step, 𝑝𝑟,𝑠∗ (𝑡, 𝑑) is simply the probability that the process enters (𝑟, 𝑠) before 𝑡 
and leaves after t. Thus, writing 𝑊𝑖,𝑗 is the time elapsing between the 𝑖𝑡ℎ and 𝑗𝑡ℎ steps, 

𝑝𝑟,𝑠∗ (𝑡, 𝑑) = 𝑃𝑟{𝑊1,𝐸 < 𝑡,𝑊1,𝐸+1 > 𝑡} 
                               = 𝑃𝑟{𝑊1,𝐸+1 > 𝑡} − 𝑃𝑟{𝑊1,𝐸 > 𝑡}            (12.21)  
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Since 𝑊1,𝐸+1  and 𝑊1,𝐸  are both sums of negative exponential random 

variables we may apply theorem 2.1, provided that 𝑏̃𝑑(𝑗)(𝑗 = 1,2,…… . , 𝐸 + 1) 
are distinct. Let us assume that r is such that 

 𝑌(𝑥/(𝑥 + 𝑦) + 𝜌) ((𝑥, 𝑦) ∈ 𝐸𝑛,𝑎 𝑎𝑛𝑑 𝑦 = 0) are distinct 

Let us get 

𝑝𝑟,𝑠∗ (𝑡, 𝑑) = ∑∏ 𝑏̃𝑑(𝑗)∏(𝑏̃𝑑(𝑗)𝑖 − 𝑏̃𝑑(𝑘))−1  𝑒𝑥𝑝 (−𝑏̃𝑑(𝑘)𝑡) 𝑛
𝑖=1𝑖≠𝑗

 𝐸𝑗=1
𝐸+1
𝑘    (12.22) 

Combining (12.18) and (12.22) and collecting together coefficients of the same 

exponential term yields 

𝑝𝑟,𝑠 = (𝑁 − 𝑎)!𝑟!  𝜌𝑁−𝑟−𝑠 𝑁!(𝑟 + 𝑠)! ∑ ∑ ∑ (∏( 𝑠2𝑑(𝑗−1) (𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1)) )𝐸
𝑗=1 )𝑑∈𝐷𝑚𝑤

𝑁−𝑚
𝑤=𝑀

𝑁−𝑎
𝑚=𝑟  

× ∏ (𝑏̃𝑑(𝑘) − 𝑏̃𝑑(𝐿+1))−1𝑛
𝑘=1𝑘≠𝐿+1

 𝑒𝑥𝑝 (−𝑤 ( 𝑚𝑚 +𝑤 + 𝜌) 𝑡) 

(12.23) 
Where 𝐷𝑚𝑤 is the set of all paths from (𝑁 − 𝑎, 𝑎) to (𝑟, 𝑠) that pass through (𝑚,𝑤), 𝐿 = 2(𝑁 −𝑚) − (𝑤 + 𝑎) is thelength of the path from (𝑁 − 𝑎, 𝑎) to (𝑚,𝑤) and 𝑀 =  𝑚𝑎𝑥(1, 𝑟 + 𝑠 −𝑚) is the smallest value w may take given 

that the path must end at (𝑟, 𝑠) . Let 𝐷1  denote the set of all paths from                     
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(𝑁 − 𝑎, 𝑎) to (𝑚,𝑤) and 𝐷2  denote the set of all paths from (𝑚,𝑤) to (𝑟, 𝑠). 
consider the function 𝜂: 𝐷𝑚𝑤 → 𝐷1 × 𝐷2 defined by  

𝜂 ((𝑠1𝑑(0), 𝑠2𝑑(0)) , (𝑠1𝑑(1), 𝑠2𝑑(1)) ,……………… . (𝑠1𝑑(𝐸), 𝑠2𝑑(𝐸))) 

                                   = ({(𝑠1𝑑(0), 𝑠2𝑑(0)) , (𝑠1𝑑(1), 𝑠2𝑑(1)) ,……………… . (𝑠1𝑑(𝐿), 𝑠2𝑑(𝐿)), 
(𝑠1𝑑(𝐿), 𝑠2𝑑(𝐿)) , (𝑠1𝑑(𝐿+1), 𝑠2𝑑(𝐿+1)) ,……………… . (𝑠1𝑑(𝐸), 𝑠2𝑑(𝐸))}) 

It is easily verified that  is a bijection from 𝐷𝑚𝑤 on 𝐷1 × 𝐷2, so every 𝑑 ∈ 𝐷𝑚𝑤  has a unique image 𝜂(𝑑) = (𝑑1(𝑑), 𝑑2(𝑑)) , say, where                      𝑑𝑗(𝑑) ∈ 𝐷𝑗(𝑗 = 1,2). Using this and fact that |𝐷𝑚𝑤| = |𝐷1||𝐷2| we may rewrite 

(12.23) in the form  

𝑝𝑟,𝑠 = (𝑁 − 𝑎)!𝑟!  𝜌𝑁−𝑟−𝑠 𝑁!(𝑟 + 𝑠)! 
× ∑ ∑ 𝐶1(𝑚,𝑤|𝑁 − 𝑎, 𝑎)𝑁−𝑚

𝑤=𝑀
𝑁−𝑎
𝑚=𝑟 𝐶2(𝑚,𝑤|𝑟, 𝑠) 𝑒𝑥𝑝 (−𝑤 ( 𝑚𝑚 +𝑤 + 𝜌) 𝑡) 

Where using (12.19) and (12.20) 

𝐶1(𝑚,𝑤|𝑁 − 𝑎, 𝑎) = ∑ ∏𝑠2𝑑1(𝑗−1) {𝑠2𝑑1(𝑗−1) + 𝑠1𝑑1(𝑗−1) [𝑠1𝑑1(𝑗−1) + 𝑠2𝑑1(𝑗−1)]𝐿
𝑗=1𝑑1∈𝐷1  

𝜌𝑠2𝑑1(𝑗−1) − 𝑒𝑥𝑝 (( 𝑚𝑚 +𝑤 + 𝜌) 𝑡)}−1 
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and 

𝐶2(𝑚,𝑤|𝑟, 𝑠) = 𝑤𝑠 . (𝑟 + 𝑠)(𝑚 + 𝑤) ∑ ∏𝑠22(𝑗) {𝑠2𝑑12(𝑗) 𝑠1𝑑12(𝑗) [𝑠1𝑑2(𝑗) + 𝑠2𝑑2(𝑗) ]𝐸−𝐿
𝑗=1𝑑2∈𝐷12  

𝜌𝑠2𝑑2(𝑗) − 𝑤 ( 𝑚𝑚 +𝑤 + 𝜌)}−1 

Total size 

 For 𝑤 = 0,1,2, ……… . . , 𝑛  ,let 𝑃𝑤 = 𝑃𝑟{𝑍(∞) = 𝑎 + 𝑤}  be the 

probability of an epidemic with total size 𝑤. 

For 𝑤 =  0,1,2,… . 𝑛 

𝑃𝑤 = lim𝑡→∞ 𝑝𝑛−𝑤,0(𝑡), 
         = lim𝜆→0 𝜆𝑞𝑛−𝑤,0(𝜆), 
          = lim𝜆→0 𝜌𝑞𝑛−𝑤,1(𝜆), 

Putting 𝑟 = 𝑚 −𝑤 and 𝑠 = 0 in (2.2). Thus  

𝑃𝑤 = 𝜌𝑓𝑛−𝑤,1                (𝑤 = 0,1,2,…… , 𝑛) 
where   

𝑓𝑟,𝑠 == lim𝜆→0 𝑞𝑟,𝑠(𝜆),                               ((𝑟, 𝑠) ∈ 𝐸𝑛,𝑎) 
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Setting  = 0 in (12.15) and (12.16) we obtain 

{  
  (𝑟 + 1)(𝑠 − 1)𝑓𝑟+1,𝑠−1 + 𝜌(𝑟 + 𝑠)(𝑠 + 1)𝑓𝑟,𝑠+1           −𝑠{𝑟 + 𝜌(𝑟 + 𝑠)}𝑓𝑟,𝑠 = 0  (𝑟, 𝑠) ∈ 𝐸𝑛,𝑎{𝑛, 𝑎})𝑎 ( 𝑛𝑛+𝑎 + 𝜌)𝑓𝑛,𝑎 = 1                     (12.24)  

Threshold Theorems 

 In this section let us consider the threshold behaviour of the modified 

stochastic epidemic. In the Literature, there are two different types of threshold 

theorems for stochastic epidemics, originating in the papers of Whittle and 

Williams. Let us prove corresponding theorems for the modified stochastic 

epidemic. 

Whittle’s Threshold Theorem 

 Let 𝑖 = (𝑍(∞) − 𝑎)/𝑛 be the intensity of the epidemic, i.e. the 

proportion of initial susceptibles that are ultimately infected. 

 For 𝑖 ∈ [0,1] let  

𝜋𝑖 = ∑ 𝑃𝑤,[𝑛𝑖]
𝑤=0  

Where [𝑛𝑖] denotes the integer part of 𝑛𝑖, be the probability that the intensity of 

the epidemic doesnot exceed i. Now for such epidemics 

𝑛(1 − 𝑖) ≦ 𝑋(𝑡) ≦ 𝑛                 (𝑡 ≧ 0) 
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and 

    𝑍(𝑡) ≦ 𝑎 + 𝑛𝑖                 (𝑡 ≧ 0) 
So 

                          
𝛽𝑛(1−𝑖)𝑌(𝑡)𝑛+𝑎 ≦ 𝛽𝑋(𝑡)𝑌(𝑡)𝑋(𝑡)+𝑌(𝑡) ≦ 𝛽𝑛𝑌(𝑡)𝑛(1−𝑖)                       (𝑡 ≧ 0) 

It follows that, for epidemics whose intensity does not exceed 𝑖 , the 

modified stochastic epidemic can be sandwiched between two birth – and – 

death processes, each having death rate g, but with birth rate 𝛽𝑛(1 − 𝑖)/(𝑛 + 𝑎) 
and 𝛽/(1 − 𝑖) respectively. Let 𝑇1 and 𝑇2 be the respective total sizes of the two 

birth – and – death processes. 

Then  

𝑃𝑟{𝑇𝑈 ≦ [𝑛𝑖]} ≦ 𝜋𝑖 ≦ 𝑃𝑟{𝑇𝐿 ≦ [𝑛𝑖]}      (12.25) 

Now 

𝑃𝑟{𝑇𝐿 ≦ [𝑛𝑖]} ≦ 𝑃𝑟{𝑇𝐿 < ∞} 
 and 𝑃𝑟{𝑇𝑈 ≦ [𝑛𝑖]} = 𝑃𝑟{𝑇𝑈 < ∞} − 𝑃𝑟{𝑇𝑈 ∈ (𝑛𝑖,∞)}. 

 Further 𝑃𝑟{𝑇𝑈 ∈ (𝑛𝑖,∞)} tends to 0 as n tends to infinity. It follows that 

for sufficiently large 𝑛, let us have  

[𝑚𝑖𝑛{𝜌(1 − 𝑖), 1}]𝑎 ≦ 𝜋𝑖 ≦ [𝑚𝑖𝑛 {𝜌(𝑛 + 𝑎)𝑛(1 − 𝑖) , 1}]𝑎                    (12.26) 
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Thus, for large 𝑛, if 𝜌 ≧ 1 there is zero probability of an epidemic exceeding 

any fixed intensity 𝑖 >  0; while if r >  1 the probability of an epidemic is 

approximately 1 − 𝜌𝑎, for small i.  

William’s threshold Theorem 

 Let us consider the modified stochastic epidemic with n initial 

susceptibles and a initial infectives, and for 𝑤 =  0,1,…… . . , 𝑛 and let 𝑃𝑤(𝑛) be 

the probability of an epidemic with final size 𝑤. in order to derive a Williams – 

type threshold theorem we need to determine  

𝑃𝑤 = lim𝑛→∞ 𝑃𝑤(𝑛)         (𝑤 = (0,1,… . . )  and finding conditions under which ∑ 𝑃𝑤 < 1∞𝑤=0 , so the limiting total size distribution has a non – zero mass at 

infinity. Let us consider the embedded random walk R(n,a) defined in section 

(3.1). Using (3.4) yields that 

𝑃𝑤(𝑛) = 𝑛!(𝑛 − 𝑤)! (𝑛 + 𝑎)!(𝑛 − 𝑤)! 𝜌𝑤+𝑎 ∑{∏(𝑠1𝑑(𝑗−1) + 𝜌(𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1)))𝐸
𝑗=1 }−1𝑑∈𝐷  

(12.27) 

Where 𝐷  is the set of all paths from (𝑛, 𝑎) to (𝑛 − 𝑤, 0), 𝐸 = 2𝑤 + 𝑎  is the 

length of any path in 𝐷, and (𝑠1𝑑(𝑘) + 𝑠2𝑑(𝑘)) (𝑘 = 0,1,… . . , 𝐸) are the coordinates 

of the path 𝑑 . The factorial expressions in (3.3) may be expressed as                   𝑛(𝑛 − 1)… . . (𝑛 − 𝑤 + 1)(𝑛 + 𝑎)(𝑛 + 𝑎 − 1)……… . (𝑛 − 𝑤 + 1) , so 𝑃𝑤(𝑛)  is 𝜌𝑤+𝑎 times the sum of product of terms of the form 
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(𝑛 −𝑚) {𝑠1𝑑(𝑗−1) + 𝜌 (𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1))}−1    (𝑚 = −𝑎,−𝑎 + 1, . , 𝑤 − 1; 𝑗 = 0,1, … , 𝐸 − 1) 
Now, for  𝑗 =  0,1, ……… . . , 𝐸 − 1 ,𝑛 − 𝑤 ≦ 𝑠1𝑑𝑗 ≦ 𝑛  and 𝑛 − 𝑤 + 1 ≦ 𝑠2𝑑𝑗 +𝑠1𝑑𝑗 ≦ 𝑛 + 𝑎, so by the sandwhich theorem 

lim𝑛→∞(𝑛 −𝑚) {𝑠1𝑑(𝑗−1) + 𝜌 (𝑠1𝑑(𝑗−1) + 𝑠2𝑑(𝑗−1))}−1  = (1 + 𝜌)−1  (𝑚 = −𝑎,−𝑎 + 1, . , 𝑤 − 1; 𝑗 = 0,1,… , 𝐸 − 1)     (12.28) 

Using the Ballot theorem 

|𝐷| = (2𝑤 + 𝑎 − 1)! 𝑎𝑤! (𝑤 + 𝑎)!                                                 (12.29) 
It now follows from (12.26) – (12.29) that  

𝑃𝑤 = (2𝑤 + 𝑎 − 1)! 𝑎𝑤! (𝑤 + 𝑎)!  𝜌𝑤+𝑎(1 + 𝜌)2𝑤+𝑎                      (12.30) 
The limiting distribution given by (12.30) is the same as that found by Williams 

for the general stochastic epidemic, and corresponds to the total size of a               

birth – and – death process, with birth rate 1, death rate r and initial population 

size 𝑎 . Thus in the limit as 𝑛 tends to infinity, the probability of a finite 

epidemic is given by {𝑚𝑖𝑛(𝜌, 1)}𝑎, so a major epidemic can occur if and only if 

r < 1. 

 



189 

 

Conclusion 

 The purpose of the topic is to give some simple application of martingales 

to epidemics. The results are connected with stopping times. The expression of 

the joint generating functions Laplace transforms of 𝑋𝑇 , ∫ 𝑋𝑢𝑌𝑢𝑇0  𝑑𝑢  and 

∫ 𝑌𝑢𝑇0  𝑑𝑢  is obtained. 𝑋𝑢  and 𝑌𝑢  denote the numbers of susceptibles and 

Carriers, Several relations between different types of epidemics are given. Here, 

Downston’s   is discussed. We have proved simple relation between moments 

here. 

 Daniels has shown that when the Threshold is large but the population 

size is much larger the distribution of the number remaining uninfected in a 

large epidemic has approximately a Poisson form with deterministic manner. 

This chapter gives the rather intuitive proof of Daniels result. The proof is based 

on a construction of this epidemic process which is more explicit than the usual 

description. 

 Results on SIS SIR SIRS models are summarized. For the SIR and SIRS 

models three subscripts are required for the probabilities. The basic 

reproduction number 𝑅0  plays a fundamental role for through the Threshold 

results differ some what. The comparison of Thresholds results for the 

determinants and stochastic version of the homogeneous Si model with 

recruitment death due to the disease the background death rate are discussed. 
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 Wiess’s and Downston’s model with parameter 𝜋, 𝛼 and 𝛽 depending on 𝑖 number of susceptibles and 𝑗 number of carriers. A martingale argument is 

performed where 𝜋 and 𝛼/𝛽  depend on 𝑖 or Weiss case. Martingale approach 

proved very valuable and given explicit results. At the end of this chapter well 

known results between moments and integrals along a trajectory are still true for 

any stopping time. 

A model for the spread of an epidemic in a closed, homogeneously 

mixing population in which new infections occur at rate 𝛽𝑥𝑦 (𝑥 + 𝑦)⁄ , where 𝑥 

and 𝑦 are the numbers of susceptible and infectious individuals, respectively, 

and  𝛽 is an infection parameter is discussed. This contrasts with the standard 

general epidemic in which new infections occur at 𝛽𝑥𝑦. Both the deterministic 

and stochastic versions of the modified epidemic are analysed. The 

deterministic model is completely soluble. The time – dependent solution of the 

stochastic model is derived. Threshold theorems, analogous to those of Whittle 

and Williams for the general stochastic epidemic, are proved for the stochastic 

model. 
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